Complement-dependent NADPH oxidase enzyme activation in renal ischemia/reperfusion injury.
S Simone, F Rascio, G Castellano, C Divella, A Chieti, P Ditonno, M Battaglia, A Crovace, F Staffieri, B Oortwijn, G Stallone, L Gesualdo, G Pertosa, G Grandaliano
Index: Free Radic. Biol. Med. 74 , 263-73, (2014)
Full Text: HTML
Abstract
NADPH oxidase plays a central role in mediating oxidative stress during heart, liver, and lung ischemia/reperfusion injury, but limited information is available about NADPH oxidase in renal ischemia/reperfusion injury. Our aim was to investigate the activation of NADPH oxidase in a swine model of renal ischemia/reperfusion damage. We induced renal ischemia/reperfusion in 10 pigs, treating 5 of them with human recombinant C1 inhibitor, and we collected kidney biopsies before ischemia and 15, 30, and 60 min after reperfusion. Ischemia/reperfusion induced a significant increase in NADPH oxidase 4 (NOX-4) expression at the tubular level, an upregulation of NOX-2 expression in infiltrating monocytes and myeloid dendritic cells, and 8-oxo-7,8-dihydro-2'-deoxyguanosine synthesis along with a marked upregulation of NADPH-dependent superoxide generation. This burden of oxidative stress was associated with an increase in tubular and interstitial expression of the myofibroblast marker α-smooth muscle actin (α-SMA). Interestingly, NOX-4 and NOX-2 expression and the overall NADPH oxidase activity as well as α-SMA expression and 8-oxo-7,8-dihydro-2'-deoxyguanosine synthesis were strongly reduced in C1-inhibitor-treated animals. In vitro, when we incubated tubular cells with the anaphylotoxin C3a, we observed an enhanced NADPH oxidase activity and α-SMA protein expression, which were both abolished by NOX-4 silencing. In conclusion, our findings suggest that NADPH oxidase is activated during ischemia/reperfusion in a complement-dependent manner and may play a potential role in the pathogenesis of progressive renal damage in this setting.Copyright © 2014 Elsevier Inc. All rights reserved.
Related Compounds
Related Articles:
2014-08-01
[Mol. Plant 7(8) , 1365-83, (2014)]
2014-06-02
[J. Exp. Med. 211(6) , 1079-91, (2014)]
2012-07-01
[Int. J. Obes. 38(12) , 1538-44, (2014)]
2014-01-01
[PLoS Biol. 12(1) , e1001758, (2014)]
Mechanism of human PTEN localization revealed by heterologous expression in Dictyostelium.
2014-12-11
[Oncogene 33(50) , 5688-96, (2014)]