Hyperspectral imaging in quality control of inkjet printed personalised dosage forms.
Hossein Vakili, Ruzica Kolakovic, Natalja Genina, Mathieu Marmion, Harri Salo, Petri Ihalainen, Jouko Peltonen, Niklas Sandler
Index: Int. J. Pharm. 483(1-2) , 244-9, (2015)
Full Text: HTML
Abstract
The aim of the study was to investigate applicability of near infra-red (NIR) hyperspectral imaging technique in quality control of printed personalised dosage forms. Inkjet printing technology was utilized to fabricate escalating doses of an active pharmaceutical ingredient (API). A solution containing anhydrous theophylline as the model drug was developed as a printable formulation. Single units solid dosage forms (SDFs) were prepared by jetting the solution onto 1 cm × 1 cm areas on carrier substrate with multiple printing passes. It was found that the number of printing passes was in excellent correlation (R(2)=0.9994) with the amount of the dispensed drug (μg cm(-2)) based on the UV calibration plot. The API dose escalation was approximately 7.5 μg cm(-2) for each printing pass concluding that inkjet printing technology can optimally provide solutions to accurate deposition of active substances with a potential for personalized dosing. Principal component analysis (PCA) was carried out in order to visualize the trends in the hyperspectral data. Subsequently, a quantitative partial least squares (PLS) regression model was created. NIR hyperspectral imaging proved (R(2)=0.9767) to be a reliable, rapid and non-destructive method to optimize quality control of these planar printed dosage forms.Copyright © 2015 Elsevier B.V. All rights reserved.
Related Compounds
Related Articles:
2014-08-01
[Mol. Plant 7(8) , 1365-83, (2014)]
2014-06-02
[J. Exp. Med. 211(6) , 1079-91, (2014)]
2012-07-01
[Int. J. Obes. 38(12) , 1538-44, (2014)]
2014-01-01
[PLoS Biol. 12(1) , e1001758, (2014)]
Mechanism of human PTEN localization revealed by heterologous expression in Dictyostelium.
2014-12-11
[Oncogene 33(50) , 5688-96, (2014)]