A green one-pot synthesis of Pt/TiO2/Graphene composites and its electro-photo-synergistic catalytic properties for methanol oxidation.
Lingting Ye, Zhongshui Li, Lian Zhang, Fengling Lei, Shen Lin
Index: J. Colloid. Interface Sci. 433 , 156-62, (2014)
Full Text: HTML
Abstract
A facile and green one-pot method was used to synthesize Pt/TiO2/Graphene composites with ethanol as a reducing agent under microwave irradiation. The as-prepared composites were characterized by SEM, TEM, EDX, XPS, XRD and Raman. Electrocatalytic performance of the Pt/TiO2/GNs composites was investigated by cyclic voltammetry (CV), chronoamperometric (CA), COad stripping voltammetry and electrochemical impedance spectrum (EIS). All experimental data have revealed that TiO2 (P25) not only enhanced the reduction ability of ethanol under microwave irradiation but also promoted Pt heterogeneous nucleation to form Pt nanoclusters which are around P25 and loaded on graphene nanosheets (GNs) surface. Electrochemical experiments showed that Pt/TiO2/GNs had much higher catalytic activity and stability toward methanol oxidation reaction (MOR) and better resistance to CO poisoning compared with Pt/GNs and the commercially available Johnson Matthey 20% Pt/C catalyst (Pt/C-JM). Especially under UV irradiation with 20min, Pt/TiO2/GNs composites showed an ultrahigh forward peak current density of 1354mAmg(-1), nearly 2.5 times higher than that of Pt/C-JM, which indicated that the electrocatalytic and photocatalytic properties of Pt/TiO2/GNs had been integrated to boost the catalytic performance for MOR. Copyright © 2014 Elsevier Inc. All rights reserved.
Related Compounds
Related Articles:
2015-01-03
[Vaccine 33(2) , 346-53, (2014)]
2014-01-01
[BMC Biotechnol. 14 , 962, (2015)]
Process development for scum to biodiesel conversion.
2015-06-01
[Bioresour. Technol. 185 , 185-93, (2015)]
2015-06-01
[Bioresour. Technol. 185 , 49-55, (2015)]
Investigation of the interactions between the EphB2 receptor and SNEW peptide variants.
2014-12-01
[Growth Factors 32(6) , 236-46, (2014)]