Biological Trace Element Research 2015-03-01

The role of nitric oxide synthase in an early phase Cd-induced acute cytotoxicity in MCF-7 cells.

Lingying Zhong, Lumei Wang, Lurong Xu, Qunlu Liu, Linlei Jiang, Yuee Zhi, Wei Lu, Pei Zhou

Index: Biol. Trace Elem. Res. 164(1) , 130-8, (2015)

Full Text: HTML

Abstract

Literature to date has confirmed that cadmium (Cd) can accomplish its toxic effects via the free radical-induced damage, but Cd itself cannot generate free radicals directly. Nitric oxide (NO) is a fundamental molecule that interplays with reactive oxygen species (ROS), which may be associated with the Cd-induced cytotoxicity. However, the role of nitric oxide synthase (NOS) in an early phase Cd-induced acute cytotoxicity and its interaction has not been studied. In this report, we provide data showing that CdCl2 (10 μM, 100 μM, 1 mM) could modulate NOS activity in terms of NO production which was first suppressed with the release of Ca(2+) and Zn(2+), then induced with the transcriptional and translational activation of the three NOS isoforms in a possible feedback manner. The ROS level in cells was increased after CdCl2 exposure. By using the free radical scavenger N-acetyl-L-cysteine (LNAC) or the NOS activity inhibitor N(G)-methyl-L-arginine (LNMMA), it was demonstrated that NOS played a critical role on the Cd-induced ROS generation. The Cd-induced cytotoxicity was associated with the NOS-mediated oxidative stress in MCF-7 cells.


Related Compounds

Related Articles:

Functional consequence of the MET-T1010I polymorphism in breast cancer.

2015-02-20

[Oncotarget 6(5) , 2604-14, (2015)]

Immunomodulation by the Pseudomonas syringae HopZ type III effector family in Arabidopsis.

2014-01-01

[PLoS ONE 9(12) , e116152, (2014)]

Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy.

2015-05-01

[Biomaterials 51 , 1-11, (2015)]

Melatonin-mediated Bim up-regulation and cyclooxygenase-2 (COX-2) down-regulation enhances tunicamycin-induced apoptosis in MDA-MB-231 cells.

2015-04-01

[J. Pineal Res. 58(3) , 310-20, (2015)]

25-O-acetyl-23,24-dihydro-cucurbitacin F induces cell cycle G2/M arrest and apoptosis in human soft tissue sarcoma cells.

2015-04-22

[J. Ethnopharmacol. 164 , 265-72, (2015)]

More Articles...