Axial thermal gradients in microchip gas chromatography.
Anzi Wang, Sampo Hynynen, Aaron R Hawkins, Samuel E Tolley, H Dennis Tolley, Milton L Lee
Index: J. Chromatogr. A. 1374 , 216-23, (2014)
Full Text: HTML
Abstract
Fabrication technologies for microelectromechanical systems (MEMS) allow miniaturization of conventional benchtop gas chromatography (GC) to portable, palm-sized microfabricated GC (μGC) devices, which are suitable for on-site chemical analysis and remote sensing. The separation performance of μGC systems, however, has not been on par with conventional GC. Column efficiency, peak symmetry and resolution are often compromised by column defects and non-ideal injections. The relatively low performance of μGC devices has impeded their further commercialization and broader application. In this work, the separation performance of μGC columns was improved by incorporating thermal gradient gas chromatography (TGGC). The analysis time was ∼20% shorter for TGGC separations compared to conventional temperature-programmed GC (TPGC) when a wide sample band was introduced into the column. Up to 50% reduction in peak tailing was observed for polar analytes, which improved their resolution. The signal-to-noise ratios (S/N) of late-eluting peaks were increased by 3-4 fold. The unique focusing effect of TGGC overcomes many of the previous shortcomings inherent in μGC analyses. Copyright © 2014 Elsevier B.V. All rights reserved.
Related Compounds
Related Articles:
Viruses infecting marine picoplancton encode functional potassium ion channels.
2014-10-01
[Virology 466-467 , 103-11, (2014)]
2014-07-01
[Adv. Healthc. Mater. 3(7) , 1071-7, (2014)]
2015-05-26
[ACS Nano 9 , 5164-79, (2015)]
Safety and biocompatibility of carbohydrate-functionalized polyanhydride nanoparticles.
2015-01-01
[AAPS J. 17(1) , 256-67, (2015)]
Reductive dechlorination of carbon tetrachloride using buffered alkaline ascorbic acid.
2015-10-01
[Chemosphere 136 , 27-31, (2015)]