Low glucose depletes glycan precursors, reduces site occupancy and galactosylation of a monoclonal antibody in CHO cell culture.
Carina Villacrés, Venkata S Tayi, Erika Lattová, Hélène Perreault, Michael Butler
Index: Biotechnol. J. 10 , 1051-66, (2015)
Full Text: HTML
Abstract
Controlled feeding of glucose has been employed previously to enhance the productivity of recombinant glycoproteins but there is a concern that low concentrations of glucose could limit the synthesis of precursors of glycosylation. Here we investigate the effect of glucose depletion on the metabolism, productivity and glycosylation of a chimeric human-llama monoclonal antibody secreted by CHO cells. The cells were inoculated into media containing varying concentrations of glucose. Glucose depletion occurred in cultures with an initial glucose ≤5.5 mM and seeded at low density (2.5 × 10(5) cells/mL) or at high cell inoculum (≥2.5 × 10(6) cells/mL) at higher glucose concentration (up to 25 mM). Glucose-depleted cultures produced non-glycosylated Mabs (up to 51%), lower galactosylation index (GI <0.43) and decreased sialylation (by 85%) as measured by mass spectrometry and HPLC. At low glucose a reduced intracellular pool of nucleotides (0.03-0.23 fmoles/cell) was measured as well as a low adenylate energy charge (<0.57). Low glucose also reduced GDP-sugars (by 77%) and UDP-hexosamines (by 90%). The data indicate that under glucose deprivation, low levels of intracellular nucleotides and nucleotide sugars reduced the availability of the immediate precursors of glycosylation. These results are important when applied to the design of fed-batch cultures. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Related Compounds
Related Articles:
Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase.
2015-01-01
[Nat. Commun. 6 , 5961, (2015)]
Antimicrobial activity of natural products from the flora of Northern Ontario, Canada.
2015-06-01
[Pharm. Biol. 53(6) , 800-6, (2015)]
2015-07-07
[Anal. Chem. 87 , 6966-73, (2015)]
Design and Evaluation of Tumor-Specific Dendrimer Epigenetic Therapeutics.
2015-06-01
[ChemistryOpen 4 , 335-41, (2015)]
Proteomics profiling of ethylene-induced tomato flower pedicel abscission.
2015-05-21
[J. Proteomics 121 , 67-87, (2015)]