Diabetes Care 2006-06-01

1,5-anhydroglucitol and postprandial hyperglycemia as measured by continuous glucose monitoring system in moderately controlled patients with diabetes.

Kathleen M Dungan, John B Buse, Joseph Largay, Mary M Kelly, Eric A Button, Shuhei Kato, Steven Wittlin

Index: Diabetes Care 29(6) , 1214-9, (2006)

Full Text: HTML

Abstract

Postprandial hyperglycemia is often inadequately assessed in diabetes management. Serum 1,5-anhydroglucitol (1,5-AG) drops as serum glucose rises above the renal threshold for glucose and has been proposed as a marker for postprandial hyperglycemia. The objective of this study is to demonstrate the relationship between 1,5-AG and postprandial hyperglycemia, as assessed by the continuous glucose monitoring system (CGMS) in suboptimally controlled patients with diabetes.Patients with type 1 or type 2 diabetes and an HbA(1c) (A1C) between 6.5 and 8% with stable glycemic control were recruited from two sites. A CGMS monitor was worn for two consecutive 72-h periods. Mean glucose, mean postmeal maximum glucose (MPMG), and area under the curve for glucose above 180 mg/dl (AUC-180), were compared with 1,5-AG, fructosamine (FA), and A1C at baseline, day 4, and day 7.1,5-AG varied considerably between patients (6.5 +/- 3.2 mug/ml [means +/- SD]) despite similar A1C (7.3 +/- 0.5%). Mean 1,5-AG (r = -0.45, P = 0.006) correlated with AUC-180 more robustly than A1C (r = 0.33, P = 0.057) or FA (r = 0.38, P = 0.88). MPMG correlated more strongly with 1,5-AG (r = -0.54, P = 0.004) than with A1C (r = 0.40, P = 0.03) or FA (r = 0.32, P = 0.07).1,5-AG reflects glycemic excursions, often in the postprandial state, more robustly than A1C or FA. 1,5-AG may be useful as a complementary marker to A1C to assess glycemic control in moderately controlled patients with diabetes.


Related Compounds

Related Articles:

Cardiolipin profiles as a potential biomarker of mitochondrial health in diet-induced obese mice subjected to exercise, diet-restriction and ephedrine treatment.

2014-11-01

[J. Appl. Toxicol. 34(11) , 1122-9, (2014)]

An improved method for the analysis of GHB in human hair by liquid chromatography tandem mass spectrometry.

2015-03-01

[J. Anal. Toxicol. 39(2) , 83-8, (2015)]

Physiology and pathophysiology of organic acids in cerebrospinal fluid.

1993-01-01

[J. Inherit. Metab. Dis. 16(4) , 648-69, (1993)]

The human serum metabolome.

2011-01-01

[PLoS ONE 6(2) , e16957, (2011)]

Age-related reference values for urinary organic acids in a healthy Turkish pediatric population.

1994-06-01

[Clin. Chem. 40(6) , 862-6, (1994)]

More Articles...