A convenient screening method to differentiate phenolic skin whitening tyrosinase inhibitors from leukoderma-inducing phenols.
Shosuke Ito, Kazumasa Wakamatsu
Index: J. Dermatol. Sci. 80 , 18-24, (2015)
Full Text: HTML
Abstract
Tyrosinase is able to oxidize a great number of phenols and catechols to form ortho-quinones. Ortho-quinones are highly reactive compounds that exert cytotoxicity through binding with thiol enzymes and the production of reactive oxygen species. Certain phenolic (and catecholic) compounds are known to induce contact/occupational leukoderma through activation to ortho-quinones.We report a convenient screening method to follow the oxidation of those leukoderma-inducing phenols by mushroom tyrosinase.Oxidation of phenolic compounds by mushroom tyrosinase was followed periodically by UV-vis spectrophotometry. The production of ortho-quinones were confirmed by their absorptions around 400-420 nm. HPLC analysis after reduction with NaBH4 detected the corresponding catechols.Leukoderma-inducing phenols, rhododendrol, raspberry ketone, 4-methoxyphenol, 4-benzyloxyphenol, 4-tert-butylphenol, and 4-tert-butylcatechol, were readily oxidized by mushroom tyrosinase to form ortho-quinones. On the other hand, phenolic skin whitening tyrosinase inhibitors, ellagic acid, 4-n-butylresorcinol, potassium 4-methoxysalicylate, and 2,2'-dihydroxy-5,5'-di-n-propylbiphenyl, were not oxidized by mushroom tyrosinase, while arbutin was only slowly oxidized.This study has provided a convenient screening method to differentiate phenolic skin whitening tyrosinase inhibitors from leukoderma-inducing phenols. A common chemical feature of the latter group of compounds is that they are readily oxidized by tyrosinase to form reactive ortho-quinone species. The present results point out the necessity that tyrosinase inhibitors should also be examined as substrates if they are phenolic compounds.Copyright © 2015. Published by Elsevier Ireland Ltd.
Related Compounds
Related Articles:
2015-03-01
[J. Liposome Res. 25(1) , 38-45, (2015)]
Development of Man-rGO for Targeted Eradication of Macrophage Ablation.
2015-09-08
[Mol. Pharm. 12 , 3226-36, (2015)]
2015-06-10
[ACS Appl. Mater. Interfaces 7 , 12168-75, (2015)]
2015-09-01
[Chem. Asian J. 10 , 1940-7, (2015)]
Surface modification-induced phase transformation of hexagonal close-packed gold square sheets.
2015-01-01
[Nat. Commun. 6 , 6571, (2015)]