European Journal of Pharmaceutics and Biopharmaceutics 2015-05-01

Physicochemical properties of pH-sensitive hydrogels based on hydroxyethyl cellulose-hyaluronic acid and for applications as transdermal delivery systems for skin lesions.

Soon Sik Kwon, Bong Ju Kong, Soo Nam Park

Index: Eur. J. Pharm. Biopharm. 92 , 146-54, (2015)

Full Text: HTML

Abstract

We investigated the physicochemical properties of pH-sensitive hydroxyethyl cellulose (HEC)/hyaluronic acid (HA) complex hydrogels containing isoliquiritigenin (ILTG), and discussed potential applications as transdermal delivery systems for the treatment of skin lesions caused by pH imbalance. HA has skin compatibility and pH functional groups and HEC serves as scaffold to build hydrogels with varied HCE:HA mass ratio. Hydrogels were synthesized via chemical cross-linking, and three-dimensional network structures were characterized via scanning electron microscopy (SEM). The swelling properties and polymer ratios of the hydrogels were investigated at pH values in the range 1-13. HECHA13 (i.e., an HEC:HA mass ratio of 1:3) was found to have optimal rheological and adhesive properties, and was used to investigate the drug release efficiency as a function of pH; the efficiency was greater than 70% at pH 7. Antimicrobial activity assays against Propionibacterium acnes were conducted to take advantage of the pH-sensitive properties of HECHA13. At pH 7, we found that HECHA13, which contained ILTG, inhibited the growth of P. acnes. Furthermore, HECHA13 was found to exhibit excellent permeability into the skin, which penetrated mostly via the hair follicle. These results indicate that this pH-sensitive hydrogel is effective as a transdermal delivery system for antimicrobial therapeutics, with potential applications in the treatment of acne. Copyright © 2015 Elsevier B.V. All rights reserved.


Related Compounds

Related Articles:

Ultrasensitive and rapid screening of mercury(II) ions by dual labeling colorimetric method in aqueous samples and applications in mercury-poisoned animal tissues.

2015-04-08

[Anal. Chim. Acta 868 , 45-52, (2015)]

A lab-on-a-chip device for analysis of amlodipine in biological fluids using peroxyoxalate chemiluminescence system.

2014-12-01

[Luminescence 29(8) , 1148-53, (2014)]

Engineering self-contained DNA circuit for proximity recognition and localized signal amplification of target biomolecules.

2014-08-01

[Nucleic Acids Res. 42(14) , 9523-30, (2014)]

Multistage aqueous two-phase extraction of a monoclonal antibody from cell supernatant.

2015-01-01

[Biotechnol. Prog. 31 , 925-36, (2015)]

A Systematic Study on Manufacturing of Prilled Microgels into Lipids for Oral Protein Delivery.

2015-10-01

[J. Pharm. Sci. 104 , 3351-65, (2015)]

More Articles...