Journal of Analytical Toxicology 2015-06-01

Azole antifungal inhibition of buprenorphine, methadone and oxycodone in vitro metabolism.

David E Moody, Fenyun Liu, Wenfang B Fang

Index: J. Anal. Toxicol. 39 , 374-86, (2015)

Full Text: HTML

Abstract

Opioid-related mortality rates have escalated. Drug interactions may increase blood concentrations of the opioid. We therefore used human liver microsomes (HLMs) and cDNA-expressed human cytochrome P450s (rCYPs) to study in vitro inhibition of buprenorphine metabolism to norbuprenorphine (CYP3A4 and 2C8), oxycodone metabolism to noroxycodone (CYP3A4 and 2C18) and oxymorphone (CYP2D6), and methadone metabolism to R- and S-2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP; CYP3A4 and 2B6). In this study, we have examined the inhibitory effect of 12 (mostly antifungal) azoles. These compounds have a wide range of solubility; to keep organic solvent ≤1%, there was an equally wide range of highest concentration tested (e.g., itraconazole 5 µM to fluconazole 1000 µM). Inhibitors were first incubated with HLMs at three concentrations with or without preincubation of inhibitor with reducing equivalents to also screen for time-dependent inhibition (TDI). Posaconazole displayed evidence of TDI; metronidazole and albendazole had no significant effect. Azoles were next screened at the highest achievable concentration for non-CYP3A4 pathways. IC50 values (µM) were determined for most CYP3A4 pathways (ranges) and other pathways as dictated by screen results: clotrimazole (0.30 - 0.35; others >30 µM); econazole (2.2 - 4.9; 2B6 R-EDDP - 9.5, S-EDDP - 6.8; 2C8 - 6.0; 2C18 - 1.0; 2D6 - 1.2); fluconazole (7.7 - 66; 2B6 - 313, 361; 2C8 - 1240; 2C18 - 17; 2D6 - 1000); itraconazole (2.5 to >5; others >5); ketoconazole (0.032 - 0.094; 2B6 - 12, 31; 2C8 - 78; 2C18 - 0.98; 2D6 - 182); miconazole (2.3 - 7.6; 2B6 - 2.8, 2.8; 2C8 - 5.3; 2C18 - 3.1; 2D6 - 5.9); posaconazole (3.4 - 20; 2C18 - 3.8; others >30); terconazole (0.48 to >10; 2C18 - 8.1; others >10) and voriconazole (0.40 - 15; 2B6 - 2.4, 2.5; 2C8 - 170; 2C18 - 13; 2D6 >300). Modeling based on estimated Ki values and plasma concentrations from the literature suggest that the orally administered azoles, particularly ketoconazole and voriconazole, have the greatest potential for inhibiting CYP3A4 pathways, as does voriconazole for the CYP2B6 pathways. Azoles used for mucosal and topical applications did not exceed the modeling threshold. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.


Related Compounds

Related Articles:

Differential protective effects of extra virgin olive oil and corn oil in liver injury: a proteomic study.

2014-12-01

[Food Chem. Toxicol. 74 , 131-8, (2014)]

Oxidative damage of rat liver mitochondria during exposure to t-butyl hydroperoxide. Role of Ca²⁺ ions in oxidative processes.

2013-06-21

[Life Sci. 92(23) , 1110-7, (2013)]

Determination of vanadium in groundwater samples with an improved kinetic spectrophotometric method.

2014-01-01

[Environ. Technol. 35(9-12) , 1165-74, (2014)]

Separation of metals and phosphorus from incinerated sewage sludge ash.

2013-01-01

[Water Sci. Technol. 67(11) , 2488-93, (2013)]

Interaction of intraocular lenses with fibronectin and human lens epithelial cells: Effect of chemical composition and aging.

2015-12-01

[J. Biomed. Mater. Res. A 103 , 3843-51, (2015)]

More Articles...