Journal of Proteome Research 2015-02-06

Phospho-iTRAQ: assessing isobaric labels for the large-scale study of phosphopeptide stoichiometry.

Pieter Glibert, Paulien Meert, Katleen Van Steendam, Filip Van Nieuwerburgh, Dieter De Coninck, Lennart Martens, Maarten Dhaenens, Dieter Deforce

Index: J. Proteome Res. 14(2) , 839-49, (2015)

Full Text: HTML

Abstract

The ability to distinguish between phosphopeptides of high and low stoichiometry is essential to discover the true extent of protein phosphorylation. We here extend the strategy whereby a peptide sample is briefly split in two identical parts and differentially labeled preceding the phosphatase treatment of one part. Our use of isobaric tags for relative and absolute quantitation (iTRAQ) marks the first time that isobaric tags have been applied for the large-scale analysis of phosphopeptides. Our Phospho-iTRAQ method focuses on the unmodified counterparts of phosphorylated peptides, which thus circumvents the ionization, fragmentation, and phospho-enrichment difficulties that hamper quantitation of stoichiometry in most common phosphoproteomics methods. Since iTRAQ enables multiplexing, simultaneous (phospho)proteome comparison between internal replicates and multiple samples is possible. The technique was validated on multiple instrument platforms by adding internal standards of high stoichiometry to a complex lysate of control and EGF-stimulated HeLa cells. To demonstrate the flexibility of Phospho-iTRAQ with regards to the experimental setup, the proteome coverage was extended through gel fractionation, while an internal replicate measurement created more stringent data analysis opportunities. The latest developments in MS instrumentation promise to further increase the resolution of the stoichiometric measurement of Phospho-iTRAQ in the future. The data have been deposited to the ProteomeXchange with identifier PXD001574.


Related Compounds

Related Articles:

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Polymerization of affinity ligands on a surface for enhanced ligand display and cell binding.

2014-12-08

[Biomacromolecules 15(12) , 4561-9, (2014)]

Synergistic activity of tenofovir and nevirapine combinations released from polycaprolactone matrices for potential enhanced prevention of HIV infection through the vaginal route.

2014-10-01

[Eur. J. Pharm. Biopharm. 88(2) , 406-14, (2014)]

Use of an enzyme-assisted method to improve protein extraction from olive leaves.

2015-02-15

[Food Chem. 169 , 28-33, (2014)]

Molecular insights into shellac film coats from different aqueous shellac salt solutions and effect on disintegration of enteric-coated soft gelatin capsules.

2015-04-30

[Int. J. Pharm. 484(1-2) , 283-91, (2015)]

More Articles...