Covalent cross-linking of cell-wall polysaccharides through esterified diferulates as a maize resistance mechanism against corn borers.
Jaime Barros-Rios, Rogelio Santiago, Hans-Joachim G Jung, Rosa A Malvar
Index: J. Agric. Food Chem. 63(8) , 2206-14, (2015)
Full Text: HTML
Abstract
There is strong evidence to suggest that cross-linking of cell-wall polymers through ester-linked diferulates has a key role in plant resistance to pests; however, direct experimentation to provide conclusive proof is lacking. This study presents an evaluation of the damage caused by two corn borer species on six maize populations particularly selected for divergent diferulate concentrations in pith stem tissues. Maize populations selected for high total diferulate concentration had 31% higher diferulates than those selected for low diferulates. Stem tunneling by corn borer species was 29% greater in the population with the lowest diferulates than in the population with the highest diferulates (31.7 versus 22.6 cm), whereas total diferulate concentration was negatively correlated with stem tunneling by corn borers. Moreover, orthogonal contrasts between groups of populations evaluated showed that larvae fed in laboratory bioassays on pith stem tissues from maize populations with higher diferulates had 30-40% lower weight than larvae fed on the same tissues from maize populations with lower diferulates. This is the first report that shows a direct relationship between diferulate deposition in maize cell walls and corn borer resistance. Current findings will help to develop adapted maize varieties with an acceptable level of resistance against borers and be useful in special kinds of agriculture, such as organic farming.
Related Compounds
Related Articles:
Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
Polymerization of affinity ligands on a surface for enhanced ligand display and cell binding.
2014-12-08
[Biomacromolecules 15(12) , 4561-9, (2014)]
2014-10-01
[Eur. J. Pharm. Biopharm. 88(2) , 406-14, (2014)]
Use of an enzyme-assisted method to improve protein extraction from olive leaves.
2015-02-15
[Food Chem. 169 , 28-33, (2014)]
2015-04-30
[Int. J. Pharm. 484(1-2) , 283-91, (2015)]