ACS Nano 2014-07-22

Flexible chains of ferromagnetic nanoparticles.

James Townsend, Ruslan Burtovyy, Yuriy Galabura, Igor Luzinov

Index: ACS Nano 8(7) , 6970-8, (2014)

Full Text: HTML

Abstract

We report the fabrication of flexible chains of ferromagnetic Ni nanoparticles that possess the ability to adapt other than the typically observed rigid (nearly) straight configurations in the absence of an external magnetic field. The dynamic mobility of the ferromagnetic chains originates from a layer of densely grafted polyethylene glycol macromolecules enveloping each nanoparticle in the chain. While ferromagnetic chains of unmodified Ni nanoparticles behave as stiff nickel nanorods, the chains made of the grafted nanoparticles demonstrate extreme flexibility. Upon changing the direction of the field, and inevitably going through a zero-field point, the shorter chains undergo chain-globule-chain transformation. The longer chains can bend to a high degree, attaining "snake-like" configurations.


Related Compounds

Related Articles:

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Polymerization of affinity ligands on a surface for enhanced ligand display and cell binding.

2014-12-08

[Biomacromolecules 15(12) , 4561-9, (2014)]

Synergistic activity of tenofovir and nevirapine combinations released from polycaprolactone matrices for potential enhanced prevention of HIV infection through the vaginal route.

2014-10-01

[Eur. J. Pharm. Biopharm. 88(2) , 406-14, (2014)]

Use of an enzyme-assisted method to improve protein extraction from olive leaves.

2015-02-15

[Food Chem. 169 , 28-33, (2014)]

Molecular insights into shellac film coats from different aqueous shellac salt solutions and effect on disintegration of enteric-coated soft gelatin capsules.

2015-04-30

[Int. J. Pharm. 484(1-2) , 283-91, (2015)]

More Articles...