Hydrazine-mediated construction of nanocrystal self-assembly materials.
Ding Zhou, Min Liu, Min Lin, Xinyuan Bu, Xintao Luo, Hao Zhang, Bai Yang
Index: ACS Nano 8(10) , 10569-81, (2014)
Full Text: HTML
Abstract
Self-assembly is the basic feature of supramolecular chemistry, which permits to integrate and enhance the functionalities of nano-objects. However, the conversion of self-assembled structures to practical materials is still laborious. In this work, on the basis of studying one-pot synthesis, spontaneous assembly, and in situ polymerization of aqueous semiconductor nanocrystals (NCs), NC self-assembly materials are produced and applied to design high performance white light-emitting diode (WLED). In producing self-assembly materials, the additive hydrazine (N2H4) is curial, which acts as the promoter to achieve room-temperature synthesis of aqueous NCs by favoring a reaction-controlled growth, as the polyelectrolyte to weaken inter-NC electrostatic repulsion and therewith facilitate the one-dimensional self-assembly, and in particular as the bifunctional monomers to polymerize with mercapto carboxylic acid-modified NCs via in situ amidation reaction. This strategy is versatile for mercapto carboxylic acid-modified aqueous NCs, for example CdS, CdSe, CdTe, CdSexTe1-x, and CdyHg1-yTe. Because of the multisite modification with carboxyl, the NCs act as macromonomers, thus producing cross-linked self-assembly materials with excellent thermal, solvent, and photostability. The assembled NCs preserve strong luminescence and avoid unpredictable fluorescent resonance energy transfer, the main problem in design WLED from multiple NC components. These advantages allow the fabrication of NC-based WLED with high color rendering index (86), high luminous efficacy (41 lm/W), and controllable color temperature.
Related Compounds
Related Articles:
A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments.
2015-01-01
[Nat. Commun. 6 , 6579, (2015)]
2014-01-01
[Anal. Sci. 30(12) , 1107-12, (2014)]
2014-06-01
[J. Food Sci. 79(6) , E1150-8, (2014)]
2015-08-28
[J. Chromatogr. A. 1409 , 282-7, (2015)]
Olfactometry Profiles and Quantitation of Volatile Sulfur Compounds of Swiss Tilsit Cheeses.
2015-09-02
[J. Agric. Food Chem. 63 , 7511-21, (2015)]