Archives of Toxicology 2015-11-01

Pregnane X receptor activation and silencing promote steatosis of human hepatic cells by distinct lipogenic mechanisms.

Andreas Bitter, Petra Rümmele, Kathrin Klein, Benjamin A Kandel, Jessica K Rieger, Andreas K Nüssler, Ulrich M Zanger, Michael Trauner, Matthias Schwab, Oliver Burk

Index: Arch. Toxicol. 89 , 2089-103, (2015)

Full Text: HTML

Abstract

In addition to its well-characterized role in the regulation of drug metabolism and transport by xenobiotics, pregnane X receptor (PXR) critically impacts on lipid homeostasis. In mice, both ligand-dependent activation and knockout of PXR were previously shown to promote hepatic steatosis. To elucidate the respective pathways in human liver, we generated clones of human hepatoma HepG2 cells exhibiting different PXR protein levels, and analyzed effects of PXR activation and knockdown on steatosis and expression of lipogenic genes. Ligand-dependent activation as well as knockdown of PXR resulted in increased steatosis in HepG2 cells. Activation of PXR induced the sterol regulatory element-binding protein (SREBP) 1-dependent lipogenic pathway via PXR-dependent induction of SREBP1a, which was confirmed in primary human hepatocytes. Inhibiting SREBP1 activity by blocking the cleavage-dependent maturation of SREBP1 protein impaired the induction of lipogenic SREBP1 target genes and triglyceride accumulation by PXR activation. On the other hand, PXR knockdown resulted in up-regulation of aldo-keto reductase (AKR) 1B10, which enhanced the acetyl-CoA carboxylase (ACC)-catalyzed reaction step of de novo lipogenesis. In a cohort of human liver samples histologically classified for non-alcoholic fatty liver disease, AKR1B10, SREBP1a and SREBP1 lipogenic target genes proved to be up-regulated in steatohepatitis, while PXR protein was reduced. In summary, our data suggest that activation and knockdown of PXR in human hepatic cells promote de novo lipogenesis and steatosis by induction of the SREBP1 pathway and AKR1B10-mediated increase of ACC activity, respectively, thus providing mechanistic explanations for a putative dual role of PXR in the pathogenesis of steatohepatitis.


Related Compounds

Related Articles:

Highly sensitive electrochemical biosensor for bisphenol A detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film.

2015-12-15

[Biosens. Bioelectron. 74 , 830-5, (2015)]

Effects of Endocrine Disruptor Compounds, Alone or in Combination, on Human Macrophage-Like THP-1 Cell Response.

2015-01-01

[PLoS ONE 10 , e0131428, (2015)]

Determination of bisphenols in beverages by mixed-mode solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry.

2015-11-27

[J. Chromatogr. A. 1422 , 230-8, (2015)]

Comparative evaluation of the efficiency of low-cost adsorbents and ligninolytic fungi to remove a combination of xenoestrogens and pesticides from a landfill leachate and abate its phytotoxicity.

2015-01-01

[J. Environ. Sci. Health. A. Tox. Hazard. Subst. Environ. Eng. 50 , 958-70, (2015)]

Derivatization of bisphenol A and its analogues with pyridine-3-sulfonyl chloride: multivariate optimization and fragmentation patterns by liquid chromatography/Orbitrap mass spectrometry.

2015-08-30

[Rapid Commun. Mass Spectrom. 29 , 1473-84, (2015)]

More Articles...