A kinetic characterization of the gill V(H(+))-ATPase in juvenile and adult Macrobrachium amazonicum, a diadromous palaemonid shrimp.
Malson N Lucena, Marcelo R Pinto, Daniela P Garçon, John C McNamara, Francisco A Leone
Index: Comp. Biochem. Physiol. B Biochem. Mol. Biol. 181 , 15-25, (2015)
Full Text: HTML
Abstract
Novel kinetic properties of a microsomal gill V(H(+))-ATPase from juvenile and adult Amazon River shrimp, Macrobrachium amazonicum, are described. While protein expression patterns are markedly different, Western blot analysis reveals a sole immunoreactive band, suggesting a single V(H(+))-ATPase subunit isoform, distributed in membrane fractions of similar density in both ontogenetic stages. Immunofluorescence labeling locates the V(H(+))-ATPase in the apical regions of the lamellar pillar cells in both stages in which mRNA expression of the V(H(+))-ATPase B-subunit is identical. Juvenile (36.6±3.3 nmol Pi min(-1) mg(-1)) and adult (41.6±1.3 nmol Pi min(-1) mg(-1)) V(H(+))-ATPase activities are similar, the apparent affinity for ATP of the adult enzyme (K0.5=0.21±0.02 mmol L(-1)) being 3-fold greater than for juveniles (K0.5=0.61±0.01 mmol L(-1)). The K0.5 for Mg(2+) interaction with the juvenile V(H(+))-ATPase (1.40 ± 0.07 mmol L(-1)) is ≈6-fold greater than for adults (0.26±0.02 mmol L(-1)) while the bafilomycin A1 inhibition constant (KI) is 45.0±2.3 nmol L(-1) and 24.2±1.2 nmol L(-1), for juveniles and adults, respectively. Both stages exhibited residual bafilomycin-insensitive ATPase activity of ≈25 nmol Pi min(-1) mg(-1), suggesting the presence of ATPases other than the V(H(+))-ATPase. These differences may reflect a long-term regulatory mechanism of V(H(+))-ATPase activity, and suggest stage-specific enzyme modulation. This is the first kinetic analysis of V(H(+))-ATPase activity in different ontogenetic stages of a freshwater shrimp and allows better comprehension of the biochemical adaptations underpinning the establishment of palaemonid shrimps in fresh water.Copyright © 2014. Published by Elsevier Inc.
Related Compounds
Related Articles:
2014-01-01
[Retrovirology 11 , 118, (2015)]
2014-01-01
[PLoS ONE 9(9) , e108055, (2014)]
2014-07-07
[Mol. Pharm. 11(7) , 1991-6, (2014)]
2015-02-01
[Cancer Chemother. Pharmacol. 75(2) , 431-7, (2015)]
Use of an enzyme-assisted method to improve protein extraction from olive leaves.
2015-02-15
[Food Chem. 169 , 28-33, (2014)]