Susceptibility of murine induced pluripotent stem cell-derived cardiomyocytes to hypoxia and nutrient deprivation.
Andreja Brodarac, Tomo Šarić, Barbara Oberwallner, Shokoufeh Mahmoodzadeh, Klaus Neef, Julie Albrecht, Karsten Burkert, Matteo Oliverio, Filomain Nguemo, Yeong-Hoon Choi, Wolfram F Neiss, Ingo Morano, Jürgen Hescheler, Christof Stamm
Index: Stem Cell Res. Ther. 6 , 83, (2015)
Full Text: HTML
Abstract
Induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) may be suitable for myocardial repair. While their functional and structural properties have been extensively investigated, their response to ischemia-like conditions has not yet been clearly defined.iPS-CMs were differentiated and enriched from murine induced pluripotent stem cells expressing enhanced green fluorescent protein (eGFP) and puromycin resistance genes under the control of an α-myosin heavy chain (α-MHC) promoter. iPS-CMs maturity and function were characterized by microscopy, real-time PCR, calcium transient recordings, electrophysiology, and mitochondrial function assays, and compared to those from neonatal murine cardiomyocytes. iPS-CMs as well as neonatal murine cardiomyocytes were exposed for 3 hours to hypoxia (1% O2) and glucose/serum deprivation, and viability, apoptosis markers, reactive oxygen species, mitochondrial membrane potential and intracellular stress signaling cascades were investigated. Then, the iPS-CMs response to mesenchymal stromal cell-conditioned medium was determined.iPS-CMs displayed key morphological and functional properties that were comparable to those of neonatal cardiomyocytes, but several parameters indicated an earlier iPS-CMs maturation stage. During hypoxia and glucose/serum deprivation, iPS-CMs exhibited a significantly higher proportion of poly-caspase-active, 7-aminoactinomycin D-positive and TUNEL-positive cells than neonatal cardiomyocytes. The average mitochondrial membrane potential was reduced in "ischemic" iPS-CMs but remained unchanged in neonatal cardiomyocytes; reactive oxygen species production was only increased in "ischemic" iPS-CMs, and oxidoreductase activity in iPS-CMs dropped more rapidly than in neonatal cardiomyocytes. In iPS-CMs, hypoxia and glucose/serum deprivation led to upregulation of Hsp70 transcripts and decreased STAT3 phosphorylation and total PKCε protein expression. Treatment with mesenchymal stromal cell-conditioned medium preserved oxidoreductase activity and restored pSTAT3 and PKCε levels.iPS-CMs appear to be particularly sensitive to hypoxia and nutrient deprivation. Counteracting the ischemic susceptibility of iPS-CMs with mesenchymal stromal cell-conditioned medium may help enhance their survival and efficacy in cell-based approaches for myocardial repair.
Related Compounds
Related Articles:
Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
2014-10-01
[J. Comp. Physiol. B, Biochem. Syst. Environ. Physiol. 184(7) , 865-76, (2014)]
Polymerization of affinity ligands on a surface for enhanced ligand display and cell binding.
2014-12-08
[Biomacromolecules 15(12) , 4561-9, (2014)]
2014-08-07
[Nanoscale 6(15) , 8720-5, (2014)]
Effect of (2)H and (18)O water isotopes in kinesin-1 gliding assay.
2014-01-01
[PeerJ 2 , e284, (2014)]