Pharmacology Biochemistry and Behavior 2015-03-01

Differential expression of the beta4 neuronal nicotinic receptor subunit affects tolerance development and nicotinic binding sites following chronic nicotine treatment.

Erin E Meyers, Esteban C Loetz, Michael J Marks

Index: Pharmacol. Biochem. Behav. 130 , 1-8, (2015)

Full Text: HTML

Abstract

The role of neuronal nicotinic acetylcholine receptors (nAChR) containing the β4 subunit in tolerance development and nicotinic binding site levels following chronic nicotine treatment was investigated. Mice differing in expression of the β4-nAChR subunit [wild-type (β4(++)), heterozygote (β4(+-)) and null mutant (β4(--))] were chronically treated for 10 days with nicotine (0, 0.5, 1.0, 2.0 or 4.0mg/kg/h) by constant intravenous infusion. Chronic nicotine treatment elicited dose-dependent tolerance development. β4(--) mice developed significantly more tolerance than either β4(++) or β4(+-) mice which was most evident following treatment with 4.0mg/kg/h nicotine. Subsets of [(125)I]-epibatidine binding were measured in several brain regions. Deletion of the β4 subunit had little effect on initial levels of cytisine-sensitive [(125)I]-epibatidine binding (primarily α4β2-nAChR sites) or their response (generally increased binding) to chronic nicotine treatment. In contrast, β4 gene-dose-dependent decreases in expression 5IA-85380 resistant [(125)I]-epibatidine binding sites (primarily β4*-nAChR) were observed. While these β4*-nAChR sites were generally resistant to regulation by chronic nicotine treatment, significant increases in binding were noted for habenula and hindbrain. Comparison of previously published tolerance development in β2(--) mice (less tolerance) to that of β4(--) mice (more tolerance) supports a differential role for these receptor subtypes in regulating tolerance following chronic nicotine treatment.Copyright © 2014 Elsevier Inc. All rights reserved.


Related Compounds

Related Articles:

Salicylic acid signaling controls the maturation and localization of the arabidopsis defense protein ACCELERATED CELL DEATH6.

2014-08-01

[Mol. Plant 7(8) , 1365-83, (2014)]

G-protein-coupled estrogen receptor 1 is anatomically positioned to modulate synaptic plasticity in the mouse hippocampus.

2015-02-11

[J. Neurosci. 35(6) , 2384-97, (2015)]

Itraconazole suppresses the growth of glioblastoma through induction of autophagy: involvement of abnormal cholesterol trafficking.

2014-07-01

[Autophagy 10(7) , 1241-55, (2014)]

SSX2 is a novel DNA-binding protein that antagonizes polycomb group body formation and gene repression.

2015-01-01

[Nucleic Acids Res. 42(18) , 11433-46, (2014)]

Functional screening in Drosophila reveals the conserved role of REEP1 in promoting stress resistance and preventing the formation of Tau aggregates.

2014-12-20

[Hum. Mol. Genet. 23(25) , 6762-72, (2014)]

More Articles...