Characterization of ceramic hydroxyapatite surface by inverse liquid chromatography in aquatic systems.
Karol Kadlec, Katarzyna Adamska, Adam Voelkel
Index: Talanta 147 , 44-9, (2015)
Full Text: HTML
Abstract
The novel approach for hydroxyapatite (HA) surface characterization was proposed. The main aim of this investigation was to estimate surface properties of HA as a biomaterial in real system i.e. in simulated body fluid (SBF). One of the method, which might be used to reflect the influence of liquid environment on sorption properties of material being surrounded by this liquid, is called inverse liquid chromatography (ILC). The lowercase letters of LFER equation (e, s, a, b, v) served for this characterization. The sorption abilities of examined material were also estimated for two different aqueous mobile phases: deionized water and water solution of 0.1M Na2HPO4. It enabled to observe the change in physiochemical properties of surface, considered in Abraham model, dependence on ions concentration in the mobile phase. Moreover pH of every aquatic solution, normally about 7, was adjusted to 5.5 and 9 to observe the influence of hydrogen and hydroxyl ions concentration on HA sorption properties. Copyright © 2015 Elsevier B.V. All rights reserved.
Related Compounds
Related Articles:
2014-08-01
[Mol. Plant 7(8) , 1365-83, (2014)]
Mechanism of human PTEN localization revealed by heterologous expression in Dictyostelium.
2014-12-11
[Oncogene 33(50) , 5688-96, (2014)]
Functional consequence of the MET-T1010I polymorphism in breast cancer.
2015-02-20
[Oncotarget 6(5) , 2604-14, (2015)]
Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
2015-04-01
[J. Pineal Res. 58(3) , 310-20, (2015)]