Extracellular magnesium and calcium reduce myotonia in isolated ClC-1 chloride channel-inhibited human muscle.
Martin Skov, Frank Vincenzo De Paoli, Jesper Lausten, Ole Baekgaard Nielsen, Thomas Holm Pedersen
Index: Muscle Nerve 51(1) , 65-71, (2015)
Full Text: HTML
Abstract
Experimental myotonia induced in rat muscle by ClC-1 chloride channel-inhibited has been shown to be related inversely to extracellular concentrations of Mg(2+) and Ca(2+) ([Mg(2+) ]o and [Ca(2+) ]o) within physiological ranges. Because this implicates a role for [Mg(2+)]o and [Ca(2+)]o in the variability of symptoms among myotonia congenita patients, we searched for similar effects of [Mg(2+)]o and [Ca(2+)]o on myotonia in human muscle.Bundles of muscle fibers were isolated from abdominal rectus in patients undergoing abdominal surgery. Myotonia was induced by ClC-1 inhibition using 9-anthracene carboxylic acid (9-AC) and was assessed from integrals of force induced by 5-Hz stimulation for 2 seconds.Myotonia disappeared gradually when [Mg(2+)]o or [Ca(2+)]o were elevated throughout their physiological ranges. These effects of [Mg(2+)]o and [Ca(2+)]o were additive and interchangeable.These findings suggest that variations in symptoms in myotonia congenita patients may arise from physiological variations in serum Mg(2+) and Ca(2+).© 2014 Wiley Periodicals, Inc.
Related Compounds
Related Articles:
2014-08-01
[Mol. Plant 7(8) , 1365-83, (2014)]
Mechanism of human PTEN localization revealed by heterologous expression in Dictyostelium.
2014-12-11
[Oncogene 33(50) , 5688-96, (2014)]
Functional consequence of the MET-T1010I polymorphism in breast cancer.
2015-02-20
[Oncotarget 6(5) , 2604-14, (2015)]
Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
2015-04-01
[J. Pineal Res. 58(3) , 310-20, (2015)]