American Journal of Physiology - Gastrointestinal and Liver Physiology 2015-10-15

Short- and long-term regulation of intestinal Na+/H+ exchange by Toll-like receptors TLR4 and TLR5.

José Miguel Cabral, Daniela Grácio, Patrício Soares-da-Silva, Fernando Magro

Index: Am. J. Physiol. Gastrointest. Liver Physiol. 309 , G703-15, (2015)

Full Text: HTML

Abstract

Inappropriate activation of pattern recognition receptors has been described as a potential trigger in the development of inflammatory bowel disease (IBD). In this study, we evaluated the activity and expression of Na(+)/H(+) exchanger (NHE) subtypes in T84 intestinal epithelial cells during Toll-like receptor 4 (TLR4) activation by monophosphoryl lipid A and TLR5 by flagellin. NHE activity and intracellular pH were evaluated by spectrofluorescence. Additionally, kinase activities were evaluated by ELISA, and siRNA was used to specifically inhibit adenylyl cyclase (AC). Monophosphoryl lipid A (MPLA) (0.01-50.00 μg/ml) and flagellin (10-500 ng/ml) inhibited NHE1 activity in a concentration-dependent manner (MPLA short term -25.2 ± 5.0%, long term -31.9 ± 4.0%; flagellin short term -14.9 ± 2.0%, long term -19.1 ± 2.0%). Both ligands triggered AC3, PKA, PLC, and PKC signal molecules. Long-term exposure to flagellin and MPLA induced opposite changes on NHE3 activity; flagellin increased NHE3 activity (∼10%) with overexpression of membrane protein, whereas MPLA decreased NHE3 activity (-17.3 ± 3.0%). MPLA and flagellin simultaneously had synergistic effects on NHE activity. MPLA and flagellin impaired pHi recovery after intracellular acidification. The simultaneous exposure to MPLA and flagellin induced a substantial pHi reduction (-0.55 ± 0.03 pH units). Activation of TLR4 and TLR5 exerts marked inhibition of NHE1 activity in intestinal epithelial cells. Transduction mechanisms set into motion during TLR4-mediated and long-term TLR5-mediated inhibition of NHE1 activity involve AC3, PKA, PLC, and PKC. However, short- and long-term TLR4 activation and TLR5 activation might use different signaling pathways. The physiological alterations on intestinal epithelial cells described here may be useful in the development of better IBD therapeutics. Copyright © 2015 the American Physiological Society.


Related Compounds

Related Articles:

Salicylic acid signaling controls the maturation and localization of the arabidopsis defense protein ACCELERATED CELL DEATH6.

2014-08-01

[Mol. Plant 7(8) , 1365-83, (2014)]

Mechanism of human PTEN localization revealed by heterologous expression in Dictyostelium.

2014-12-11

[Oncogene 33(50) , 5688-96, (2014)]

Functional consequence of the MET-T1010I polymorphism in breast cancer.

2015-02-20

[Oncotarget 6(5) , 2604-14, (2015)]

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Melatonin-mediated Bim up-regulation and cyclooxygenase-2 (COX-2) down-regulation enhances tunicamycin-induced apoptosis in MDA-MB-231 cells.

2015-04-01

[J. Pineal Res. 58(3) , 310-20, (2015)]

More Articles...