The Journal of Steroid Biochemistry and Molecular Biology 2015-08-01

Genistein increases estrogen receptor beta expression in prostate cancer via reducing its promoter methylation.

Abeer M Mahmoud, Umaima Al-Alem, Mohamed M Ali, Maarten C Bosland

Index: J. Steroid Biochem. Mol. Biol. 152 , 62-75, (2015)

Full Text: HTML

Abstract

Genistein has protective effects against prostate cancer (PCa) but whether this protection involves an estrogen receptor (ER) β dependent mechanism has yet to be elucidated. ER-β has a tumor suppressor role in PCa and its levels decline with cancer progression which was linked to ER-β promoter hypermethylation. Genistein has been suggested to have demethylating activities in cancer. However, the ability of genistein to reverse ER-β promoter hypermethylation in PCa has not been studied. In addition, there are great discrepancies among studies that examined the effect of genistein on ER-β gene expression. Therefore, we sought to explore effects of genistein on ER-β promoter methylation as a mechanism of modulating ER-β expression using three PCa cell lines, LNCaP, LAPC-4 and PC-3. We also examined the role of ER-β in mediating the preventive action of genistein. Our data demonstrated that genistein at physiological ranges (0.5-10 μmol/L) reduced ER-β promoter methylation significantly with corresponding dose-dependent increases in ER-β expression in LNCaP and LAPC-4 but not in PC-3 cells, which could be attributed to the low basal levels of ER-β promoter methylation in PC-3 cell line. Genistein induced phosphorylation, nuclear translocation and transcriptional activity of ER-β in all three PCa cell lines. Inhibitory effects of genistein on LAPC-4 and PC-3 cell proliferation were diminished using a specific ER-β antagonist. In conclusion, genistein and ER-β act together to prevent PCa cell proliferation; genistein increases ER-β levels via reducing its promoter methylation and ER-β, in turn, mediates the preventive action of genistein.Copyright © 2015 Elsevier Ltd. All rights reserved.


Related Compounds

Related Articles:

Genetic and pharmacologic inhibition of eIF4E reduces breast cancer cell migration, invasion, and metastasis.

2015-03-15

[Cancer Res. 75(6) , 1102-12, (2015)]

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

25-O-acetyl-23,24-dihydro-cucurbitacin F induces cell cycle G2/M arrest and apoptosis in human soft tissue sarcoma cells.

2015-04-22

[J. Ethnopharmacol. 164 , 265-72, (2015)]

Improved ethanol tolerance and ethanol production from glycerol in a streptomycin-resistant Klebsiella variicola mutant obtained by ribosome engineering.

2015-01-01

[Bioresour. Technol. 176 , 156-62, (2014)]

Polymerization of affinity ligands on a surface for enhanced ligand display and cell binding.

2014-12-08

[Biomacromolecules 15(12) , 4561-9, (2014)]

More Articles...