Hollow fibre liquid phase micro-extraction by facilitated anionic exchange for the determination of flavonoids in faba beans (Vicia faba L.).
Nadia Chaieb, Montserrat López-Mesas, Johannes Luis González, Messaoud Mars, Manuel Valiente
Index: Phytochem. Anal. 26 , 346-52, (2015)
Full Text: HTML
Abstract
Flavonoids are polyphenolic compounds found ubiquitously in foods of plant origin. They are commonly extracted from plant materials with ethanol, methanol, water, their combination or even with acidified extracting solutions. The disadvantages of these methods are the use of high quantity of organic solvent, the possible loss of analytes in the different steps and the laborious process of the techniques. In addition, the complexity of the phenolic mixtures present in plant materials requires a preliminary clean-up and fractionation of the crude extracts.To develop a hollow fibre liquid phase micro-extraction (HF-LPME) method for a one step clean-up and pre-concentration of flavonoids.Two flavonoids (catechin and rutin) has been extracted by HF-LPME and analysed by HPLC. The related driving force for the liquid membrane has been studied by means of facilitated and non-facilitated transport. Different ionic and non-ionic water insoluble compounds [trioctylamine (TOA), tributyl phosphate (TBP), trioctylphosphine oxide (TOPO) and methyltrioctylammonium chloride (aliquat 336)] were used as carriers. The liquid membrane was constituted by a solution of n-decanol in the presence or absence of carriers.Maximum enrichment factors were obtained with n-decanol/aliquat 336 (20%) as organic liquid membrane, sodium hydroxide (NaOH) (0.1 M) as donor solution, sodium chloride (NaCl) (2 M) as acceptor solution and 3 h as extraction time. Under these conditions, good results for validation parameters were obtained [for linearity, limit of detection (LOD), limit of quantitation (LOQ) and repeatability].The developed method is simple, effective and has been successfully applied to determine catechin and rutin in ethanolic extracts of faba beans.Copyright © 2015 John Wiley & Sons, Ltd.
Related Compounds
Related Articles:
2015-03-15
[Cancer Res. 75(6) , 1102-12, (2015)]
Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
2015-04-22
[J. Ethnopharmacol. 164 , 265-72, (2015)]
2015-01-01
[Bioresour. Technol. 176 , 156-62, (2014)]
Polymerization of affinity ligands on a surface for enhanced ligand display and cell binding.
2014-12-08
[Biomacromolecules 15(12) , 4561-9, (2014)]