Mechanistic studies of the tyrosinase-catalyzed oxidative cyclocondensation of 2-aminophenol to 2-aminophenoxazin-3-one.
Courtney Washington, Jamere Maxwell, Joenathan Stevenson, Gregory Malone, Edward W Lowe, Qiang Zhang, Guangdi Wang, Neil R McIntyre
Index: Arch. Biochem. Biophys. 577-578 , 24-34, (2015)
Full Text: HTML
Abstract
Tyrosinase (EC 1.14.18.1) catalyzes the monophenolase and diphenolase reaction associated with vertebrate pigmentation and fruit/vegetable browning. Tyrosinase is an oxygen-dependent, dicopper enzyme that has three states: Emet, Eoxy, and Edeoxy. The diphenolase activity can be carried out by both the met and the oxy states of the enzyme while neither mono- nor diphenolase activity results from the deoxy state. In this study, the oxidative cyclocondensation of 2-aminophenol (OAP) to the corresponding 2-aminophenoxazin-3-one (APX) by mushroom tyrosinase was investigated. Using a combination of various steady- and pre-steady state methodologies, we have investigated the kinetic and chemical mechanism of this reaction. The kcat for OAP is 75 ± 2s(-1), K(OAP)M = 1.8 ± 0.2mM, K(O2)M =25 ± 4 μM with substrates binding in a steady-state preferred fashion. Stopped flow and global analysis support a model where OAP preferentially binds to the oxy form over the met (k7 ≫ k1). For the met form, His269 and His61 are the proposed bases, while the oxy form uses the copper-peroxide and His61 for the sequential deprotonation of anilinic and phenolic hydrogens. Solvent KIEs show proton transfer to be increasingly rate limiting for kcat/K(OAP)M as [O2] → 0 μM (1.38 ± 0.06) decreasing to 0.83 ± 0.03 as [O2] → ∞ reflecting a partially rate limiting μ-OH bond cleavage (E met) and formation (E oxy) following protonation in the transition state. The coupling and cyclization reactions of o-quinone imine and OAP pass through a phenyliminocyclohexadione intermediate to APX, forming at a rate of 6.91 ± 0.03 μM(-1)s(-1) and 2.59E-2 ± 5.31E-4s(-1). Differences in reactivity attributed to the anilinic moiety of OAP with o-diphenols are discussed.Copyright © 2015 Elsevier Inc. All rights reserved.
Related Compounds
Related Articles:
Permeation of Dopamine Sulfate through the Blood-Brain Barrier.
2015-01-01
[PLoS ONE 10 , e0133904, (2015)]
Lipophilic prodrugs of nucleoside triphosphates as biochemical probes and potential antivirals.
2015-01-01
[Nat. Commun. 6 , 8716, (2015)]
2015-11-13
[Eur. J. Med. Chem. 105 , 63-79, (2015)]
2015-09-01
[Bioorg. Med. Chem. 23 , 5402-9, (2015)]
2015-08-01
[Pharm. Res. 32 , 2713-26, (2015)]