Multi-wavelength emission through self-induced second-order wave-mixing processes from a Nd3+ doped crystalline powder random laser.
André L Moura, Vladimir Jerez, Lauro J Q Maia, Anderson S L Gomes, Cid B de Araújo
Index: Sci. Rep. 5 , 13816, (2015)
Full Text: HTML
Abstract
Random lasers (RLs) based on neodymium ions (Nd(3+)) doped crystalline powders rely on multiple light scattering to sustain laser oscillation. Although Stokes and anti-Stokes Nd(3+) RLs have been demonstrated, the optical gain obtained up to now was possibly not large enough to produce self-frequency conversion. Here we demonstrate self-frequency upconversion from Nd(3+) doped YAl3(BO3)4 monocrystals excited at 806 nm, in resonance with the Nd(3+) transition (4)I9/2 → (4)F5/2. Besides the observation of the RL emission at 1062 nm, self-converted second-harmonic at 531 nm, and self-sum-frequency generated emission at 459 nm due to the RL and the excitation laser at 806 nm, are reported. Additionally, second-harmonic of the excitation laser at 403 nm was generated. These results exemplify the first multi-wavelength source of radiation owing to nonlinear optical effect in a Nd(3+) doped crystalline powder RL. Contrary to the RLs based on dyes, this multi-wavelength light source can be used in photonic devices due to the large durability of the gain medium.
Related Compounds
Related Articles:
2015-05-01
[Bioprocess Biosyst. Eng. 38(5) , 889-903, (2015)]
2015-04-21
[Analyst 140(8) , 2785-96, (2015)]
2014-04-01
[Pharmacogn. Mag. 10(Suppl 2) , S383-91, (2014)]
The fused anthranilate synthase from Streptomyces venezuelae functions as a monomer.
2015-02-01
[Mol. Cell Biochem. 400(1-2) , 9-15, (2015)]
2014-12-01
[Oncol. Rep. 32(6) , 2380-6, (2014)]