Estradiol, but not testosterone, heightens cortisol-mediated negative feedback on pulsatile ACTH secretion and ACTH approximate entropy in unstressed older men and women.
Animesh N Sharma, Paul Aoun, Jean R Wigham, Suanne M Weist, Johannes D Veldhuis
Index: Am. J. Physiol. Regul. Integr. Comp. Physiol. 306(9) , R627-35, (2014)
Full Text: HTML
Abstract
How sex steroids modulate glucocorticoid feedback on the hypothalamic-pituitary-corticotrope (HPC) unit is controversial in humans. We postulated that testosterone (T) in men and estradiol (E2) in women govern unstressed cortisol-mediated negative feedback on ACTH secretion. To test this hypothesis, 24 men and 24 women age 58 ± 2.4 yr were pretreated with leuprolide and either sex steroid (E2 in women, T in men) or placebo addback. Placebo or ketoconazole (KTCZ) was administered overnight to inhibit adrenal steroidogenesis during overnight 14-h intravenous infusions of saline or cortisol in a continuous versus pulsatile manner to test for feedback differences. ACTH was measured every 10 min during the last 8 h of the infusions. The main outcome measures were mean ACTH concentrations, pulsatile ACTH secretion, and ACTH approximate entropy (ApEn). ACTH concentrations were lower in women than men (P < 0.01), and in women in the E2+ compared with E2- group under both continuous (P = 0.01) and pulsatile (P = 0.006) cortisol feedback, despite higher cortisol binding globulin and lower free cortisol levels in women than men (P < 0.01). In the combined groups, under both modes of cortisol addback, ACTH concentrations, pulsatile ACTH secretion, and ACTH secretory-burst mass correlated negatively and univariately with E2 levels (each P < 0.005). E2 also suppressed ACTH ApEn (process randomness) during continuous cortisol feedback (P = 0.004). T had no univariate effect but was a positive correlate of ACTH when assessed jointly with E2 (negative) under cortisol pulses. In conclusion, sex steroids modulate selective gender-related hypothalamic-pituitary adrenal-axis adaptations to cortisol feedback in unstressed humans.
Related Compounds
Related Articles:
2015-01-01
[Arch. Toxicol. 89(1) , 107-19, (2015)]
2014-10-15
[Biochem. Pharmacol. 91(4) , 543-51, (2014)]
2014-07-01
[G3 (Bethesda) 4(7) , 1247-58, (2014)]
2010-01-01
[Chem. Res. Toxicol. 23 , 171-83, (2010)]
2011-12-01
[J. Sci. Ind. Res. 65(10) , 808, (2006)]