Peroxiredoxin 6 Is a Crucial Factor in the Initial Step of Mitochondrial Clearance and Is Upstream of the PINK1-Parkin Pathway.
Shuaipeng Ma, Xuefei Zhang, Liangjun Zheng, Zeyang Li, Xuyang Zhao, Wenjia Lai, Hongyan Shen, Junniao Lv, Guofeng Yang, Qingsong Wang, Jianguo Ji
Index: Antioxid. Redox Signal. 24 , 486-501, (2016)
Full Text: HTML
Abstract
PTEN-putative kinase 1 (PINK1)-Parkin-mediated mitophagy is crucial for the clearance of damaged mitochondria. However, the mechanisms underlying PINK1-Parkin-mediated mitophagy are not fully understood. The goal of this study is to identify new regulators and to elucidate the regulatory mechanisms of mitophagy.Quantitative mitochondrial proteomic analysis revealed that 63 proteins showed increased levels and 36 proteins showed decreased levels in cells subjected to carbonyl cyanide m-chlorophenyl hydrazone (CCCP) treatment. Peroxiredoxin 6 (PRDX6 or Prx6), a unique member of the ubiquitous PRDX family, was recruited to depolarized mitochondria. Reactive oxygen species (ROS) generated by CCCP promoted PRDX6 accumulation and PINK1 stabilization in damaged mitochondria and induced mitophagy. In addition, depletion of PRDX6 resulted in the stabilization of PINK1, accumulation of autophagic marker, p62, translocation of Parkin to mitochondria, and lipidation of microtubule-associated protein 1 light chain 3. Furthermore, these events were blocked upon supplementation with antioxidant N-acetyl-l-cysteine or depletion of PINK1.This is the first study to demonstrate that PRDX6 is the only member of the PRDX family that relocates to damaged mitochondria, where it plays a crucial role in the initial stage of mitophagy by controlling ROS homeostasis.ROS induce the recruitment of PRDX6 to mitochondria, where PRDX6 controls ROS homeostasis in the initial step of PINK1-Parkin-mediated mitophagy. Our study provides new insight into the initial regulatory mechanisms of mitophagy and reveals the protective role of PRDX6 in the clearance of damaged mitochondria.
Related Compounds
Related Articles:
Suppression of Cpn10 increases mitochondrial fission and dysfunction in neuroblastoma cells.
2014-01-01
[PLoS ONE 9(11) , e112130, (2014)]
Ellipticine induces apoptosis in T-cell lymphoma via oxidative DNA damage.
2015-03-01
[Leuk. Lymphoma 56(3) , 739-47, (2015)]
Antiviral effect of methylated flavonol isorhamnetin against influenza.
2015-01-01
[PLoS ONE 10(3) , e0121610, (2015)]
2015-02-01
[Mol. Med. Report. 11(2) , 1428-34, (2014)]
2015-02-01
[J. Leukoc. Biol. 97(2) , 363-78, (2015)]