Comparative photo-release of nitric oxide from isomers of substituted terpyridinenitrosylruthenium(II) complexes: experimental and computational investigations.
Joëlle Akl, Isabelle Sasaki, Pascal G Lacroix, Isabelle Malfant, Sonia Mallet-Ladeira, Patricia Vicendo, Norberto Farfán, Rosa Santillan
Index: Dalton Trans. 43(33) , 12721-33, (2014)
Full Text: HTML
Abstract
The 4'-(2-fluorenyl)-2,2':6',2''-terpyridine (FT) ligand and its cis(Cl,Cl)- and trans(Cl,Cl)-[Ru(II)(FT)Cl2(NO)](PF6) complexes have been synthesized. Both isomers were separated by HPLC and fully characterized by (1)H and (13)C NMR. The X-ray diffraction crystal structures were solved for FT (Pna21 space group, a = 34.960(4), b = 5.9306(7), c = 9.5911(10) Å), and trans(Cl,Cl)-[Ru(II)(FT)Cl2(NO)](PF6)·MeOH (P1[combining macron] space group, a = 10.3340(5), b = 13.0961(6), c = 13.2279(6) Å, α = 72.680(2), β = 70.488(2), γ = 67.090(2)°). Photo-release of NO˙ radicals occurs under irradiation at 405 nm, with a quantum yield of 0.31 and 0.10 for cis(Cl,Cl)-[Ru(II)(FT)Cl2(NO)](PF6) and trans(Cl,Cl)-[Ru(II)(FT)Cl2(NO)](PF6), respectively. This significant difference is likely due to the trans effect of Cl(-), which favors the photo-release. UV-visible spectroscopy and cyclic voltammetry indicate the formation of ruthenium(iii) species as photoproducts. A density functional theory (DFT) analysis provides a rationale for the understanding of the photo-physical properties, and allows relating the weakening of the Ru-NO bond, and finally the photo-dissociation, to HOMO → LUMO excitations.
Related Compounds
Related Articles:
2015-09-07
[Dalton Trans. 44 , 14813-22, (2015)]
Self-assembled hybrid metal oxide base catalysts prepared by simply mixing with organic modifiers.
2015-01-01
[Nat. Commun. 6 , 8580, (2015)]
2015-08-01
[J. Inorg. Biochem. 149 , 49-58, (2015)]
2015-03-01
[J. Inorg. Biochem. 144 , 1-12, (2015)]