ACS Chemical Biology 2015-11-20

Tyrosine-Specific Chemical Modification with in Situ Hemin-Activated Luminol Derivatives.

Shinichi Sato, Kosuke Nakamura, Hiroyuki Nakamura

Index: ACS Chem. Biol. 10 , 2633-40, (2015)

Full Text: HTML

Abstract

Tyrosine-specific chemical modification was achieved using in situ hemin-activated luminol derivatives. Tyrosine residues in peptide and protein were modified effectively with N-methylated luminol derivatives under oxidative conditions in the presence of hemin and H2O2. Both single and double modifications of the tyrosine residue occurred in the reaction of angiotensin II with N-methylated luminol derivative 9. Tyrosine-specific chemical modification of the model protein bovine serum albumin (BSA) revealed that the surface-exposed tyrosine residues were selectively modified with 9. We succeeded in the functionalization of several proteins using azide-conjugated compound 18 using alkyne-conjugated probes by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) or dibenzocyclooctyne (DBCO)-mediated copper-free click chemistry. This tyrosine-specific modification was orthogonal to conventional lysine modification by N-hydroxysuccinimide (NHS) ester, and dual functionalization by fluorescence modification of tyrosine residues and PEG modification of lysine residues was achieved without affecting the modification efficiency.


Related Compounds

Related Articles:

Neuroprotective effect of modified Chungsimyeolda-tang, a traditional Korean herbal formula, via autophagy induction in models of Parkinson's disease.

2015-01-15

[J. Ethnopharmacol. 159 , 93-101, (2014)]

Biomolecular imaging with a C60-SIMS/MALDI dual ion source hybrid mass spectrometer: instrumentation, matrix enhancement, and single cell analysis.

2014-11-01

[J. Am. Soc. Mass Spectrom. 25(11) , 1897-907, (2014)]

Itraconazole suppresses the growth of glioblastoma through induction of autophagy: involvement of abnormal cholesterol trafficking.

2014-07-01

[Autophagy 10(7) , 1241-55, (2014)]

Diclofenac toxicity in human intestine ex vivo is not related to the formation of intestinal metabolites.

2015-01-01

[Arch. Toxicol. 89(1) , 107-19, (2015)]

Methionine oxidation accelerates the aggregation and enhances the neurotoxicity of the D178N variant of the human prion protein.

2014-12-01

[Biochim. Biophys. Acta 1842(12 Pt A) , 2345-56, (2014)]

More Articles...