Biochemical and Biophysical Research Communications 2014-04-18

Periplasmic disulfide isomerase DsbC is involved in the reduction of copper binding protein CueP from Salmonella enterica serovar Typhimurium.

Bo-Young Yoon, Jin-Sik Kim, Si-Hyeon Um, Inseong Jo, Jin-Wook Yoo, Kangseok Lee, Yong-Hak Kim, Nam-Chul Ha

Index: Biochem. Biophys. Res. Commun. 446(4) , 971-6, (2014)

Full Text: HTML

Abstract

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen with the ability to survive and replicate in macrophages. Periplasmic copper binding protein CueP is known to confer copper resistance to S. Typhimurium, and has been implicated in ROS scavenge activity by transferring the copper ion to a periplasmic superoxide dismutase or by directly reducing the copper ion. Structural and biochemical studies on CueP showed that its copper binding site is surrounded by conserved cysteine residues. Here, we present evidence that periplasmic disulfide isomerase DsbC plays a key role in maintaining CueP protein in the reduced state. We observed purified DsbC protein efficiently reduced the oxidized form of CueP, and that it acted on two (Cys104 and Cys172) of the three conserved cysteine residues. Furthermore, we found that a surface-exposed conserved phenylalanine residue in CueP was important for this process, which suggests that DsbC specifically recognizes the residue of CueP. An experiment using an Escherichia coli system confirmed the critical role played by DsbC in the ROS scavenge activity of CueP. Taken together, we propose a molecular insight into how CueP collaborates with the periplasmic disulfide reduction system in the pathogenesis of the bacteria. Copyright © 2014 Elsevier Inc. All rights reserved.


Related Compounds

Related Articles:

Neuropeptide Y in the noradrenergic neurones induces obesity and inhibits sympathetic tone in mice.

2015-04-01

[Acta Physiol. (Oxf.) 213(4) , 902-19, (2015)]

G-protein-coupled estrogen receptor 1 is anatomically positioned to modulate synaptic plasticity in the mouse hippocampus.

2015-02-11

[J. Neurosci. 35(6) , 2384-97, (2015)]

The Drosophila MAPK p38c regulates oxidative stress and lipid homeostasis in the intestine.

2014-09-01

[PLoS Genet. 10(9) , e1004659, (2014)]

Driving cartilage formation in high-density human adipose-derived stem cell aggregate and sheet constructs without exogenous growth factor delivery.

2014-12-01

[Tissue Eng. Part A 20(23-24) , 3163-75, (2014)]

Diclofenac toxicity in human intestine ex vivo is not related to the formation of intestinal metabolites.

2015-01-01

[Arch. Toxicol. 89(1) , 107-19, (2015)]

More Articles...