New systematically modified vesamicol analogs and their affinity and selectivity for the vesicular acetylcholine transporter - A critical examination of the lead structure.
Claudia Barthel, Dietlind Sorger, Winnie Deuther-Conrad, Matthias Scheunemann, Stephanie Schweiger, Petra Jäckel, Ali Roghani, Jörg Steinbach, Gerrit Schüürmann, Osama Sabri, Peter Brust, Barbara Wenzel
Index: Eur. J. Med. Chem. 100 , 50-67, (2015)
Full Text: HTML
Abstract
To verify vesamicol as lead structure in the development of radioligands for imaging of VAChT in the brain by PET, we systematically modified this molecule and investigated four different groups of derivatives. Structural changes were conducted in all three ring systems A, B, and C resulting in a library of different vesamicol analogs. Based on their in vitro binding affinity toward VAChT as well as σ1 and σ2 receptors, we performed a structure-affinity relationship (SAR) study regarding both affinity and selectivity. The compounds possessed VAChT affinities in the range of 1.32 nM (benzovesamicol) to >10 μM and selectivity factors from 0.1 to 73 regarding σ1 and σ2 receptors, respectively. We could confirm the exceptional position of benzovesamicols as most affine VAChT ligands. However, we also observed that most of the compounds with high VAChT affinity demonstrated considerable affinity in particular to the σ1 receptor. Finally, none of the various vesamicol analogs in all four groups showed an in vitro binding profile suitable for specific VAChT imaging in the brain. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Related Compounds
Related Articles:
Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
Assembly and structure of Lys33-linked polyubiquitin reveals distinct conformations.
2015-04-15
[Biochem. J. 467(2) , 345-52, (2015)]
2015-05-01
[Biochem. J. 467(3) , 425-38, (2015)]
2015-04-01
[J. Virol. 89(8) , 4421-33, (2015)]
DNase II-dependent DNA digestion is required for DNA sensing by TLR9.
2015-01-01
[Nat. Commun. 6 , 5853, (2015)]