Applied and Environmental Microbiology 2008-04-01

The genomes of the non-clearing-zone-forming and natural-rubber- degrading species Gordonia polyisoprenivorans and Gordonia westfalica harbor genes expressing Lcp activity in Streptomyces strains.

Daniel Bröker, David Dietz, Matthias Arenskötter, Alexander Steinbüchel

Index: Appl. Environ. Microbiol. 74 , 2288-97, (2008)

Full Text: HTML

Abstract

The latex-clearing protein (Lcp(K30)) from the rubber-degrading bacterium Streptomyces sp. strain K30 is involved in the cleavage of poly(cis-1,4-isoprene), yielding isoprenoid aldehydes and ketones. Lcp homologues have so far been detected in all investigated clearing-zone-forming rubber-degrading bacteria. Internal degenerated oligonucleotides derived from lcp genes of Streptomyces sp. strain K30 (lcp(K30)), Streptomyces coelicolor strain A3(2), and Nocardia farcinica strains IFM10152 and E1 were applied in PCR to investigate whether lcp homologues occur also in the non-clearing-zone-forming rubber-utilizing bacteria Gordonia polyisoprenivorans strains VH2 and Y2K, Gordonia alkanivorans strain 44187, and Gordonia westfalica strain Kb1, which grow adhesively on rubber. The 1,230- and 1,224-bp lcp-homologous genes from G. polyisoprenivorans strain VH2 (lcp(VH2)) and G. westfalica strain Kb1 (lcp(Kb1)) were obtained after screening genomic libraries by degenerated PCR amplification, and their translational products exhibited 50 and 52% amino acid identity, respectively, to Lcp(K30). Recombinant lcp(VH2) and lcp(Kb1) harboring cells of the non-rubber-degrading Streptomyces lividans strain TK23 were able to form clearing zones and aldehydes on latex overlay-agar plates, thus indicating that lcp(VH2) and lcp(Kb1) encode functionally active proteins. Analysis by gel permeation chromatography demonstrated lower polymer concentrations and molecular weights of the remaining polyisoprenoid molecules after incubation with these recombinant S. lividans strains. Reverse transcription-PCR analysis demonstrated that lcp(VH2) was transcribed in cells of G. polyisoprenivorans strain VH2 cultivated in the presence of poly(cis-1,4-isoprene) but not in the presence of sodium acetate. Anti-Lcp(K30) immunoglobulin Gs, which were raised in this study, were rather specific for Lcp(K30) and did not cross-react with Lcp(VH2) and Lcp(Kb1). A lcp(VH2) disruption mutant was still able to grow with poly(cis-1,4-isoprene) as sole carbon source; therefore, lcp(VH2) seems not to be essential for rubber degradation in G. polyisoprenivorans.


Related Compounds

Related Articles:

Does Brillouin light scattering probe the primary glass transition process at temperatures well above glass transition?

2010-02-21

[J. Chem. Phys. 132(7) , 074906, (2010)]

Bicontinuous polymeric microemulsions from polydisperse diblock copolymers.

2009-03-26

[J. Phys. Chem. B 113(12) , 3726-37, (2009)]

Comparative study of the mesostructure of natural and synthetic polyisoprene by size exclusion chromatography-multi-angle light scattering and asymmetrical flow field flow fractionation-multi-angle light scattering.

2012-02-10

[J. Chromatogr. A. 1224 , 27-34, (2012)]

Initiation of rubber biosynthesis: In vitro comparisons of benzophenone-modified diphosphate analogues in three rubber-producing species.

2008-10-01

[Phytochemistry 69(14) , 2539-45, (2008)]

Possible involvement of an extracellular superoxide dismutase (SodA) as a radical scavenger in poly(cis-1,4-isoprene) degradation.

2008-12-01

[Appl. Environ. Microbiol. 74(24) , 7643-53, (2008)]

More Articles...