Assembly of IMPDH2-based, CTPS-based, and mixed rod/ring structures is dependent on cell type and conditions of induction.
Gerson Dierley Keppeke, S John Calise, Edward K L Chan, Luis Eduardo C Andrade
Index: J. Genet. Genomics 42 , 287-99, (2015)
Full Text: HTML
Abstract
Inhibition of guanosine triphosphate (GTP) and cytidine triphosphate (CTP) biosynthetic pathways induces cells to assemble rod/ring (RR) structures, also named cytoophidia, which consist of the enzymes cytidine triphosphate synthase (CTPS) and inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). We aim to explore the interaction of CTPS and IMPDH2 in the generation of RR structures. HeLa and COS-7 cells were cultured in normal conditions or in the presence of 6-diazo-5-oxo-L-norleucine (DON), ribavirin, or mycophenolic acid (MPA). Over 90% of DON-treated cells presented RR structures. In HeLa cells, 35% of the RR structures were positive for IMPDH2 alone, 26% were CTPS alone, and 31% were IMPDH2/CTPS mixed, while in COS-7 cells, 42% of RR were IMPDH2 alone, 41% were CTPS alone, and 10% were IMPDH2/CTPS mixed. Ribavirin and MPA treatments induced only IMPDH2-based RR. Cells were also transfected with an N-terminal hemagglutinin (NHA)-tagged CTPS1 construct. Over 95% of NHA-CTPS1 transfected cells with DON treatment presented IMPDH2-based RR and almost 100% presented CTPS1-based RR; when treated with ribavirin, over 94% of transfected cells presented IMPDH2-based RR and 37% presented CTPS1-based RR, whereas 2% of untreated transfected cells presented IMPDH2-based RR and 28% presented CTPS1-based RR. These results may help in understanding the relationship between CTP and GTP biosynthetic pathways, especially concerning the formation of filamentous RR structures. Copyright © 2015 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
Related Compounds
Related Articles:
2011-01-01
[PLoS ONE 6 , e29690, (2011)]