Journal of Endocrinology 2007-08-01

Mechanisms involved in the cytotoxic and cytoprotective actions of saturated versus monounsaturated long-chain fatty acids in pancreatic beta-cells.

Eleftheria Diakogiannaki, Shalinee Dhayal, Caroline E Childs, Philip C Calder, Hannah J Welters, Noel G Morgan

Index: J. Endocrinol. 194(2) , 283-91, (2007)

Full Text: HTML

Abstract

Long-chain saturated and monounsaturated fatty acids differ in their propensity to induce beta-cell death in vitro with palmitate (C16:0) being cytotoxic, whereas palmitoleate (C16:1n-7) is cytoprotective. We now show that this cytoprotective capacity extends to a poorly metabolised C16:1n-7 derivative, methyl-palmitoleate (0.25 mM palmitate alone: 92 +/- 4% death after 18 h; palmitate plus 0.25 mM methyl-palmitoleate: 12 +/- 2%; P < 0.001). Palmitoleate and its methylated derivative also acted as mitogens in cultured beta-cells (5-bromo-2-deoxyuridine incorporation - control: 0.15 +/- 0.01 units; 0.25 mM palmitoleate: 0.22 +/- 0.01 units; P < 0.05). It has been proposed that alterations in neutral lipid synthesis (particularly triacylglycerol (TAG) formation) might mediate the differential responses to saturated and unsaturated fatty acids and we have examined this proposition. Palmitate and palmitoleate both promoted beta-cell phospholipid remodelling and increased TAG formation (control: 0.9 +/- 0.1 nmol TAG/10(6) cells; 0.25 mM palmitate: 1.55 +/- 0.07; 0.25 mM palmitoleate: 1.4 +/- 0.05; palmitate plus palmitoleate: 2.3 +/- 0.1). By contrast, methyl-palmitoleate failed to influence TAG levels (0.25 mM methyl-palmitoleate alone: 0.95 +/- 0.06 nmol TAG/10(6) cells; methyl-palmitoleate plus palmitate: 1.5 +/- 0.05) or its fatty acid composition in beta-cells exposed to palmitate. The results suggest that monounsaturated fatty acids can promote cell viability and mitogenesis by a mechanism that does not require their metabolism and is independent of alterations in TAG formation.


Related Compounds

Related Articles:

Optimization of supercritical fluid consecutive extractions of fatty acids and polyphenols from Vitis vinifera grape wastes.

2015-01-01

[J. Food Sci. 80(1) , E101-7, (2015)]

Lipozyme RM IM-catalyzed acidolysis of Cinnamomum camphora seed oil with oleic acid to produce human milk fat substitutes enriched in medium-chain fatty acids.

2014-10-29

[J. Agric. Food Chem. 62(43) , 10594-603, (2014)]

Metabolism of topically applied fatty acid methyl esters in BALB/C mouse epidermis.

2013-10-01

[J. Dermatol. Sci. 1(1) , 33-7, (1990)]

Coupling of capillary electrochromatography to coordination ion spray mass spectrometry, a novel detection method.

1999-09-01

[Electrophoresis 20(12) , 2329-36, (1999)]

More Articles...