Planta 2005-10-01

Poor competitive fitness of transgenically mitigated tobacco in competition with the wild type in a replacement series.

Hani Al-Ahmad, Shmuel Galili, Jonathan Gressel

Index: Planta 222(2) , 372-85, (2005)

Full Text: HTML

Abstract

Transgenic crops can interbreed with other crop cultivars or with related weeds, increasing the potential of the hybrid progeny for competition. To prevent generating competitive hybrids, we previously tested tobacco (Nicotiana tabacum L.) as a model for validating the transgenic mitigation (TM) concept using tandem constructs where a gene of choice is linked to mitigating genes that are positive or neutral to the crop, but deleterious to a recipient under competition. Here, we examine the efficacy of the TM concept at various ratios of transgenically mitigated tobacco in competition with the wild type tobacco in an ecological replacement series. The dwarf/herbicide-resistant TM transgenic plants cultivated alone under self-competition grew well and formed many more flowers than the tall wild type, which is an indication of greater reproductivity. In contrast to the wild type, TM flowering was almost completely suppressed in mixed cultures at most TM/wild type ratios up to 75% transgenic, as the TM plants were extremely unfit to reproduce. In addition, homozygous TM progeny had an even lower competitive fitness against the wild type than hemizygous/homozygous TM segregants. Thus, the TM technology was effective in reducing the risk of transgene establishment of intraspecific transgenic hybrids at different competitive levels, at the close spacing typical of weed populations.


Related Compounds

Related Articles:

Abiotic degradation (photodegradation and hydrolysis) of imidazolinone herbicides.

2008-02-01

[J. Environ. Sci. Health B 43(2) , 105-12, (2008)]

Acetohydroxyacid synthase (AHAS) in vivo assay for screening imidazolinone-resistance in sunflower (Helianthus annuus L.).

2012-12-01

[Plant Physiol. Biochem. 61 , 103-7, (2012)]

Faster degradation of herbicidally-active enantiomer of imidazolinones in soils.

2010-05-01

[Chemosphere 79(11) , 1040-5, (2010)]

Enantiomeric separation of imidazolinone herbicides using chiral high-performance liquid chromatography.

2007-03-01

[Chirality 19(3) , 171-8, (2007)]

Biolistic-mediated genetic transformation of cowpea (Vigna unguiculata) and stable Mendelian inheritance of transgenes.

2008-09-01

[Plant Cell Rep. 27 , 1475-1483, (2008)]

More Articles...