PLoS ONE 2012-01-01

Structural and mutational studies on substrate specificity and catalysis of Salmonella typhimurium D-cysteine desulfhydrase.

Sakshibeedu R Bharath, Shveta Bisht, Rajesh K Harijan, Handanahal S Savithri, Mathur R N Murthy

Index: PLoS ONE 7(5) , e36267, (2012)

Full Text: HTML

Abstract

Salmonella typhimurium DCyD (StDCyD) is a fold type II pyridoxal 5' phosphate (PLP)-dependent enzyme that catalyzes the degradation of D-Cys to H(2)S and pyruvate. It also efficiently degrades β-chloro-D-alanine (βCDA). D-Ser is a poor substrate while the enzyme is inactive with respect to L-Ser and 1-amino-1-carboxy cyclopropane (ACC). Here, we report the X-ray crystal structures of StDCyD and of crystals obtained in the presence of D-Cys, βCDA, ACC, D-Ser, L-Ser, D-cycloserine (DCS) and L-cycloserine (LCS) at resolutions ranging from 1.7 to 2.6 Å. The polypeptide fold of StDCyD consisting of a small domain (residues 48-161) and a large domain (residues 1-47 and 162-328) resembles other fold type II PLP dependent enzymes. The structures obtained in the presence of D-Cys and βCDA show the product, pyruvate, bound at a site 4.0-6.0 Å away from the active site. ACC forms an external aldimine complex while D- and L-Ser bind non-covalently suggesting that the reaction with these ligands is arrested at Cα proton abstraction and transimination steps, respectively. In the active site of StDCyD cocrystallized with DCS or LCS, electron density for a pyridoxamine phosphate (PMP) was observed. Crystals soaked in cocktail containing these ligands show density for PLP-cycloserine. Spectroscopic observations also suggest formation of PMP by the hydrolysis of cycloserines. Mutational studies suggest that Ser78 and Gln77 are key determinants of enzyme specificity and the phenolate of Tyr287 is responsible for Cα proton abstraction from D-Cys. Based on these studies, a probable mechanism for the degradation of D-Cys by StDCyD is proposed.


Related Compounds

Related Articles:

Mitogen-Activated Protein Kinase 6 and Ethylene and Auxin Signaling Pathways Are Involved in Arabidopsis Root-System Architecture Alterations by Trichoderma atroviride.

2015-06-01

[Mol. Plant Microbe Interact. 28 , 701-10, (2015)]

Chilling-related cell damage of apple (Malus × domestica Borkh.) fruit cortical tissue impacts antioxidant, lipid and phenolic metabolism.

2015-02-01

[Physiol. Plant. 153(2) , 204-20, (2015)]

Silicon induces resistance to the brown spot fungus Cochliobolus miyabeanus by preventing the pathogen from hijacking the rice ethylene pathway.

2015-04-01

[New Phytol. 206(2) , 761-73, (2015)]

Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance.

2015-01-01

[BMC Plant Biol. 15 , 213, (2015)]

Shoot to root communication is necessary to control the expression of iron-acquisition genes in Strategy I plants.

2013-01-01

[Planta 237(1) , 65-75, (2013)]

More Articles...