The Journal of Pain 2014-12-01

Sensitization of group III and IV muscle afferents in the mouse after ischemia and reperfusion injury.

Jessica L Ross, Luis F Queme, Aaron T Shank, Renita C Hudgins, Michael P Jankowski

Index: J. Pain 15(12) , 1257-70, (2015)

Full Text: HTML

Abstract

Ischemic myalgia is a unique type of muscle pain in the patient population. The role that discrete muscle afferent subpopulations play in the generation of pain during ischemic events, however, has yet to be determined. Using 2 brachial artery occlusion models to compare prolonged ischemia or transient ischemia with reperfusion of the muscles, we found that both injuries caused behavioral decrements in grip strength, as well as increased spontaneous pain behaviors. Using our ex vivo forepaw muscles, median and ulnar nerves, dorsal root ganglion, and spinal cord recording preparation, we found after both prolonged and transient ischemia that there was a significant increase in the number of afferents that responded to both noxious and non-noxious chemical (lactate, adenosine triphosphate, varying pH) stimulation of the muscles compared to uninjured controls. However, we found an increase in firing to heat stimuli specifically in muscle afferents during prolonged ischemia, but a distinct increase in afferent firing to non-noxious chemicals and decreased mechanical thresholds after transient ischemia. The unique changes in afferent function observed also corresponded with distinct patterns of gene expression in the dorsal root ganglia. Thus, the development of ischemic myalgia may be generated by unique afferent-based mechanisms during prolonged and transient ischemia.This study analyzed the response properties of thinly myelinated group III and unmyelinated group IV muscle afferents during prolonged and transient ischemia in addition to pain behaviors and alterations in DRG gene expression in the mouse. Results suggest that mechanisms of pain generation during prolonged ischemia may be different from ischemia/reperfusion.


Related Compounds

Related Articles:

G-protein-coupled estrogen receptor 1 is anatomically positioned to modulate synaptic plasticity in the mouse hippocampus.

2015-02-11

[J. Neurosci. 35(6) , 2384-97, (2015)]

Intraplacental gene therapy with Ad-IGF-1 corrects naturally occurring rabbit model of intrauterine growth restriction.

2015-03-01

[Hum. Gene Ther. 26(3) , 172-82, (2015)]

Correlation of perfusion MRI and 18F-FDG PET imaging biomarkers for monitoring regorafenib therapy in experimental colon carcinomas with immunohistochemical validation.

2015-01-01

[PLoS ONE 10(2) , e0115543, (2015)]

Appetitive cue-evoked ERK signaling in the nucleus accumbens requires NMDA and D1 dopamine receptor activation and regulates CREB phosphorylation.

2014-11-01

[Learn. Mem. 21(11) , 606-15, (2014)]

Suppression of InsP3 receptor-mediated Ca2+ signaling alleviates mutant presenilin-linked familial Alzheimer's disease pathogenesis.

2014-05-14

[J. Neurosci. 34(20) , 6910-23, (2014)]

More Articles...