PLoS ONE 2015-01-01

Tumor cell targeting by iron oxide nanoparticles is dominated by different factors in vitro versus in vivo.

Christian NDong, Jennifer A Tate, Warren C Kett, Jaya Batra, Eugene Demidenko, Lionel D Lewis, P Jack Hoopes, Tillman U Gerngross, Karl E Griswold

Index: PLoS ONE 10(2) , e0115636, (2015)

Full Text: HTML

Abstract

Realizing the full potential of iron oxide nanoparticles (IONP) for cancer diagnosis and therapy requires selective tumor cell accumulation. Here, we report a systematic analysis of two key determinants for IONP homing to human breast cancers: (i) particle size and (ii) active vs passive targeting. In vitro, molecular targeting to the HER2 receptor was the dominant factor driving cancer cell association. In contrast, size was found to be the key determinant of tumor accumulation in vivo, where molecular targeting increased tumor tissue concentrations for 30 nm but not 100 nm IONP. Similar to the in vitro results, PEGylation did not influence in vivo IONP biodistribution. Thus, the results reported here indicate that the in vitro advantages of molecular targeting may not consistently extend to pre-clinical in vivo settings. These observations may have important implications for the design and clinical translation of advanced, multifunctional, IONP platforms.


Related Compounds

Related Articles:

A survey of the interactome of Kaposi's sarcoma-associated herpesvirus ORF45 revealed its binding to viral ORF33 and cellular USP7, resulting in stabilization of ORF33 that is required for production of progeny viruses.

2015-05-01

[J. Virol. 89(9) , 4918-31, (2015)]

Insight into PreImplantation Factor (PIF*) mechanism for embryo protection and development: target oxidative stress and protein misfolding (PDI and HSP) through essential RIKP [corrected] binding site.

2014-01-01

[PLoS ONE 9(7) , e100263, (2014)]

Hepatitis E virus (HEV) protease: a chymotrypsin-like enzyme that processes both non-structural (pORF1) and capsid (pORF2) protein.

2014-08-01

[J. Gen. Virol. 95(Pt 8) , 1689-700, (2014)]

Acetyltransferase p300/CBP associated Factor (PCAF) regulates crosstalk-dependent acetylation of histone H3 by distal site recognition.

2015-01-16

[ACS Chem. Biol. 10(1) , 157-64, (2015)]

Mouse aldehyde dehydrogenase ALDH3B2 is localized to lipid droplets via two C-terminal tryptophan residues and lipid modification.

2015-01-01

[Biochem. J. 465(1) , 79-87, (2015)]

More Articles...