Plant Journal 2011-05-01

Role of aromatic aldehyde synthase in wounding/herbivory response and flower scent production in different Arabidopsis ecotypes.

Michael Gutensohn, Antje Klempien, Yasuhisa Kaminaga, Dinesh A Nagegowda, Florence Negre-Zakharov, Jung-Hyun Huh, Hongli Luo, Renate Weizbauer, Tesfaye Mengiste, Dorothea Tholl, Natalia Dudareva

Index: Plant J. 66(4) , 591-602, (2011)

Full Text: HTML

Abstract

Aromatic L-amino acid decarboxylases (AADCs) are key enzymes operating at the interface between primary and secondary metabolism. The Arabidopsis thaliana genome contains two genes, At2g20340 and At4g28680, encoding pyridoxal 5'-phosphate-dependent AADCs with high homology to the recently identified Petunia hybrida phenylacetaldehyde synthase involved in floral scent production. The At4g28680 gene product was recently biochemically characterized as an L-tyrosine decarboxylase (AtTYDC), whereas the function of the other gene product remains unknown. The biochemical and functional characterization of the At2g20340 gene product revealed that it is an aromatic aldehyde synthase (AtAAS), which catalyzes the conversion of phenylalanine and 3,4-dihydroxy-L-phenylalanine to phenylacetaldehyde and dopaldehyde, respectively. AtAAS knock-down and transgenic AtAAS RNA interference (RNAi) lines show significant reduction in phenylacetaldehyde levels and an increase in phenylalanine, indicating that AtAAS is responsible for phenylacetaldehyde formation in planta. In A. thaliana ecotype Columbia (Col-0), AtAAS expression was highest in leaves, and was induced by methyl jasmonate treatment and wounding. Pieris rapae larvae feeding on Col-0 leaves resulted in increased phenylacetaldehyde emission, suggesting that the emitted aldehyde has a defensive activity against attacking herbivores. In the ecotypes Sei-0 and Di-G, which emit phenylacetaldehyde as a predominant flower volatile, the highest expression of AtAAS was found in flowers and RNAi AtAAS silencing led to a reduction of phenylacetaldehyde formation in this organ. In contrast to ecotype Col-0, no phenylacetaldehyde accumulation was observed in Sei-0 upon wounding, suggesting that AtAAS and subsequently phenylacetaldehyde contribute to pollinator attraction in this ecotype.© 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.


Related Compounds

Related Articles:

Identification of olfactory receptor neurons in Uraba lugens (Lepidoptera: Nolidae) and its implications for host range.

2015-07-01

[J. Insect Physiol. 78 , 33-46, (2015)]

Volatile Compounds from Grape Skin, Juice and Wine from Five Interspecific Hybrid Grape Cultivars Grown in Québec (Canada) for Wine Production.

2015-01-01

[Molecules 20 , 10980-1016, (2015)]

Mosquito odorant receptor for DEET and methyl jasmonate.

2014-11-18

[Proc. Natl. Acad. Sci. U. S. A. 111(46) , 16592-7, (2014)]

Comparison of Aroma-Active Volatiles in Oolong Tea Infusions Using GC-Olfactometry, GC-FPD, and GC-MS.

2015-09-02

[J. Agric. Food Chem. 63 , 7499-510, (2015)]

Approaches of aroma extraction dilution analysis (AEDA) for headspace solid phase microextraction and gas chromatography-olfactometry (HS-SPME-GC-O): Altering sample amount, diluting the sample or adjusting split ratio?

2015-11-15

[Food Chem. 187 , 44-52, (2015)]

More Articles...