International Journal of Gynecological Cancer 2014-02-01

Interactions of human peritoneal mesothelial cells with serous ovarian cancer cell spheroids--evidence for a mechanical and paracrine barrier function of the peritoneal mesothelium.

Sylvia Stadlmann, Hans Feichtinger, Gregor Mikuz, Christian Marth, Alain Gustave Zeimet, Manfred Herold, Cornelius Knabbe, Felix Albert Offner

Index: Int. J. Gynecol. Cancer 24(2) , 192-200, (2014)

Full Text: HTML

Abstract

Ovarian carcinoma spreads by implantation of tumor cells onto the peritoneal mesothelium. We established a 3-dimensional coculture model to simulate the interactions of ovarian carcinoma cell aggregates with human peritoneal mesothelial cells (HPMC).Multicellular tumor spheroids (MCTS) of the human ovarian cancer cell line SK-OV-3 were directly inoculated onto either confluent HPMC monolayers or their submesothelial matrix or were cocultured with mesothelium without direct cellular contact.Inoculation of MCTS onto submesothelial matrix resulted in rapid attachment (within 30 minutes) of the tumor cell aggregates followed by rapid dissemination (within 12 hours) and growth of tumor cells. Intact mesothelium increased the time required for MCTS attachment (up to 180 minutes) and led to almost complete inhibition of tumor cell dissemination and to 47% tumor growth suppression. Bromodeoxyuridine incorporation into tumor cell nuclei was almost completely abolished in cocultured MCTS. Growth also was inhibited in MCTS treated with supernatants of HPMC. Analysis of coculture supernatants revealed that HPMC-derived transforming growth factor β (TGF-β) was almost completely bound by MCTS. Addition of a function-blocking anti-TGF-β antibody (30 μg/mL) to the cocultures abrogated the growth inhibitory effect of the mesothelium by 50%.The present model provides a dynamic system to study the complex interactions of ovarian carcinoma cells with HPMC over extended periods and suggests that the mesothelium constitutes a mechanical and partly TGF-β-mediated paracrine barrier to the progression of ovarian cancer.


Related Compounds

Related Articles:

ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling.

2015-01-01

[Nat. Commun. 6 , 5794, (2015)]

Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy.

2015-05-01

[Biomaterials 51 , 1-11, (2015)]

25-O-acetyl-23,24-dihydro-cucurbitacin F induces cell cycle G2/M arrest and apoptosis in human soft tissue sarcoma cells.

2015-04-22

[J. Ethnopharmacol. 164 , 265-72, (2015)]

Pro-apoptotic and pro-autophagic effects of the Aurora kinase A inhibitor alisertib (MLN8237) on human osteosarcoma U-2 OS and MG-63 cells through the activation of mitochondria-mediated pathway and inhibition of p38 MAPK/PI3K/Akt/mTOR signaling pathway.

2015-01-01

[Drug Des. Devel. Ther. 9 , 1555-84, (2015)]

SPREDs (Sprouty related proteins with EVH1 domain) promote self-renewal and inhibit mesodermal differentiation in murine embryonic stem cells.

2015-04-01

[Dev. Dyn. 244(4) , 591-606, (2015)]

More Articles...