Biochimica et Biophysica Acta 2015-05-01

Peptide Lv augments L-type voltage-gated calcium channels through vascular endothelial growth factor receptor 2 (VEGFR2) signaling.

Liheng Shi, Soyoung Ko, Michael L Ko, Andy Jeesu Kim, Gladys Y-P Ko

Index: Biochim. Biophys. Acta 1853(5) , 1154-64, (2015)

Full Text: HTML

Abstract

We previously identified peptide Lv, a novel bioactive peptide that enhances the activity of L-type voltage-gated calcium channels (L-VGCCs) in cone photoreceptors. In this study, we verified that peptide Lv was able to augment L-VGCC currents in cardiomyocytes, as well as promote proliferation of endothelial cells. We used a proteomics approach to determine the specific receptors and binding partners of peptide Lv and found that vascular endothelial growth factor receptor 2 (VEGFR2) interacted with peptide Lv. Peptide Lv treatment in embryonic cardiomyocytes stimulated tyrosine autophosphorylation of VEGFR2 and activated its downstream signaling. Peptide Lv activity was blocked by DMH4, a VEGFR2 specific blocker, but not by SCH202676, an allosteric inhibitor of G protein-coupled receptors, suggesting that the activity of peptide Lv was mediated through VEGFR2 signaling. Inhibition of VEGFR tyrosine kinase or its downstream signaling molecules abolished the augmentation of L-VGCCs elicited by peptide Lv in cardiomyocytes. In addition, peptide Lv promoted cell proliferation of cultured human endothelial cells. Calcium entry through L-VGCCs is essential for excitation-contraction coupling in cardiomyocytes. Since peptide Lv was able to augment L-VGCCs through activation of VEGF signaling in cardiomyocytes and promote proliferation of endothelial cells, peptide Lv may play an important role in regulating the cardiovascular system. Copyright © 2015 Elsevier B.V. All rights reserved.


Related Compounds

Related Articles:

Genetic and pharmacologic inhibition of eIF4E reduces breast cancer cell migration, invasion, and metastasis.

2015-03-15

[Cancer Res. 75(6) , 1102-12, (2015)]

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Co-ordinated brain and craniofacial development depend upon Patched1/XIAP regulation of cell survival.

2015-02-01

[Hum. Mol. Genet. 24(3) , 698-713, (2015)]

Synergistic activity of tenofovir and nevirapine combinations released from polycaprolactone matrices for potential enhanced prevention of HIV infection through the vaginal route.

2014-10-01

[Eur. J. Pharm. Biopharm. 88(2) , 406-14, (2014)]

Comparative in vitro study on magnetic iron oxide nanoparticles for MRI tracking of adipose tissue-derived progenitor cells.

2014-01-01

[PLoS ONE 9(9) , e108055, (2014)]

More Articles...