F420H2-dependent degradation of aflatoxin and other furanocoumarins is widespread throughout the actinomycetales.
Gauri V Lapalikar, Matthew C Taylor, Andrew C Warden, Colin Scott, Robyn J Russell, John G Oakeshott
Index: PLoS ONE 7(2) , e30114, (2012)
Full Text: HTML
Abstract
Two classes of F(420)-dependent reductases (FDR-A and FDR-B) that can reduce aflatoxins and thereby degrade them have previously been isolated from Mycobacterium smegmatis. One class, the FDR-A enzymes, has up to 100 times more activity than the other. F(420) is a cofactor with a low reduction potential that is largely confined to the Actinomycetales and some Archaea and Proteobacteria. We have heterologously expressed ten FDR-A enzymes from diverse Actinomycetales, finding that nine can also use F(420)H(2) to reduce aflatoxin. Thus FDR-As may be responsible for the previously observed degradation of aflatoxin in other Actinomycetales. The one FDR-A enzyme that we found not to reduce aflatoxin belonged to a distinct clade (herein denoted FDR-AA), and our subsequent expression and analysis of seven other FDR-AAs from M. smegmatis found that none could reduce aflatoxin. Certain FDR-A and FDR-B enzymes that could reduce aflatoxin also showed activity with coumarin and three furanocoumarins (angelicin, 8-methoxysporalen and imperatorin), but none of the FDR-AAs tested showed any of these activities. The shared feature of the compounds that were substrates was an α,β-unsaturated lactone moiety. This moiety occurs in a wide variety of otherwise recalcitrant xenobiotics and antibiotics, so the FDR-As and FDR-Bs may have evolved to harness the reducing power of F(420) to metabolise such compounds. Mass spectrometry on the products of the FDR-catalyzed reduction of coumarin and the other furanocoumarins shows their spontaneous hydrolysis to multiple products.
Related Compounds
Related Articles:
2010-01-01
[Chem. Res. Toxicol. 23 , 171-83, (2010)]
2011-12-01
[J. Sci. Ind. Res. 65(10) , 808, (2006)]
2014-08-01
[Drug Dev. Ind. Pharm. 40(8) , 1065-71, (2014)]
2015-02-01
[Xenobiotica 45(2) , 95-106, (2014)]
Cytochrome p450-mediated metabolic activation of diosbulbin B.
2014-10-01
[Drug Metab. Dispos. 42(10) , 1727-36, (2014)]