Degradation of pentachlorobiphenyl by a sequential treatment using Pd coated iron and an aerobic bacterium (H1).
Na He, Peijun Li, Yuncheng Zhou, Shuxiu Fan, Wanxia Ren
Index: Chemosphere 76(11) , 1491-7, (2009)
Full Text: HTML
Abstract
The reductive dechlorination and biodegradation of 2,2(')4,5,5(')-pentachlorobiphenyl (PCB#101) was investigated in a laboratory-scale. Palladium coated iron (Pd/Fe) was used as a catalytic reductant for the chemical degradation of 2,2(')4,5,5(')-pentachlorobiphenyl, and an aerobic bacteria was used for biodegradation following the chemical reaction in this study. Dechlorination was affected by several factors such as Pd loading, initial soil pH and the amount of Pd/Fe used. The results showed that higher Pd loading, higher dosage of Pd/Fe and slightly acid condition were beneficial to the catalytic dechlorination of 2,2('),4,5,5(')-pentachlorobiphenyl. In laboratory batch experiments, 2,2(')4,5,5(')-pentachlorobiphenyl was reduced in the presence of Pd/Fe bimetal, which was not further degraded by aerobic bacteria. 2,2('),4-trichlorobiphenyl (PCB#17), a reduction product from 2,2(')4,5,5(')-pentachlorobiphenyl, was readily biodegraded in the presence of a aerobic bacterial strain. It is suggested that an integrated Pd/Fe catalytic reduction-aerobic biodegradation process may be a feasible option for treating PCB-contaminated soil.
Related Compounds
Related Articles:
2016-04-01
[Talanta 150 , 310-8, (2016)]
2013-12-01
[Environ. Monit. Assess. 185(12) , 9935-48, (2013)]
2005-12-01
[Reproduction 130(6) , 857-68, (2005)]
Tumor promoting potency of PCBs 28 and 101 in rat liver.
2006-07-01
[Toxicol. Lett. 164(2) , 133-43, (2006)]
2011-07-01
[Bull. Environ. Contam. Toxicol. 87(1) , 65-9, (2011)]