Pest Management Science 2006-06-01

Fate of the herbicides glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron in two Finnish arable soils.

Pirkko Laitinen, Katri Siimes, Liisa Eronen, Sari Rämö, Leena Welling, Seija Oinonen, Leona Mattsoff, Marja Ruohonen-Lehto

Index: Pest Manag. Sci. 62(6) , 473-91, (2006)

Full Text: HTML

Abstract

The fate of five herbicides (glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron) was studied in two Finnish sugar beet fields for 26 months. Soil types were sandy loam and clay. Two different herbicide-tolerant sugar beet cultivars and three different herbicide application schedules were used. Meteorological data were collected throughout the study and soil properties were thoroughly analysed. An extensive data set of herbicide residue concentrations in soil was collected. Five different soil depths were sampled. The study was carried out using common Finnish agricultural practices and represents typical sugar beet cultivation conditions in Finland. The overall observed order of persistence was ethofumesate > glyphosate > phenmedipham > metamitron > glufosinate-ammonium. Only ethofumesate and glyphosate persisted until the subsequent spring. Seasonal variation in herbicide dissipation was very high and dissipation ceased almost completely during winter. During the 2 year experiment no indication of potential groundwater pollution risk was obtained, but herbicides may cause surface water pollution.Copyright (c) 2006 Society of Chemical Industry


Related Compounds

Related Articles:

Mining biologically-active molecules for inhibitors of fatty acid amide hydrolase (FAAH): Identification of phenmedipham and amperozide as FAAH inhibitors

2009-01-01

[Bioorg. Med. Chem. Lett. 19 , 6793-6, (2009)]

The influence of lipophilicity and formulation on the distribution of pesticides in laboratory-scale sediment/water systems.

2003-02-01

[Pest Manag. Sci. 59(2) , 238-44, (2003)]

Purification and properties of an Arthrobacter oxydans P52 carbamate hydrolase specific for the herbicide phenmedipham and nucleotide sequence of the corresponding gene.

1992-10-01

[J. Bacteriol. 174(20) , 6600-7, (1992)]

Expression of a bacterial gene in transgenic plants confers resistance to the herbicide phenmedipham.

1994-09-01

[Plant Mol. Biol. 25(6) , 977-87, (1994)]

Effects of different soil types on the Collembolans Folsomia candida and Hypogastrura assimilis using the herbicide Phenmedipham.

2005-10-01

[Arch. Environ. Contam. Toxicol. 49(3) , 343-52, (2005)]

More Articles...