New indole derivatives as potent and selective serotonin uptake inhibitors.
J L Malleron, C Guérémy, S Mignani, J F Peyronel, A Truchon, J C Blanchard, A Doble, P Laduron, O Piot, J L Zundel
Index: J. Med. Chem. 36 , 1194, (1993)
Full Text: HTML
Abstract
A series of new indole derivatives (2-28) has been prepared in the search for novel 5-HT uptake inhibitors. These compounds were obtained by the condensation of N-(chloroalkyl) naphthalenesultam derivatives with the appropriate amine in presence of a base, at reflux of DMF or THF. The yields were moderate (12-56%), except for the piperazine derivative 20 (85%). The affinity of the compounds for uptake site and 5-HT2, alpha 1, and D2 receptors was measured. Some compounds were studied in vivo by their potentiating effect of 5-HTP-induced symptomatology. The most potent and selective (uptake, 5-HT2 versus alpha 1, D2 sites) compounds contain a 3-[(4-piperidinyl)methyl]indole moiety. 5-Fluoro-3-[(4-piperidinyl)methyl]indole itself (compound 1) displayed a high affinity for the uptake site but was devoided of in vivo activity. N-Methylation of this compound abolished the affinity. In contrast N-substitution by a two-carbon chain linked to a naphthalenesultam or related heterocycle led to compounds exhibiting high affinity for the uptake site. One of them, 1-[2-[4-((5-fluoro-1H-indol-3-yl)methyl-1- piperidinyl]ethyl]-5,6-dihydro-1H,4H-1,2,5-thiadiazolo[4,3,2- ij]quinoline 2,2-dioxide (compound 24), was found as active as fluoxetine in vivo.
Related Compounds
Related Articles:
2011-08-11
[J. Med. Chem. 54 , 5320, (2011)]
2005-03-23
[J. Am. Chem. Soc. 127(11) , 4104-13, (2005)]
2011-01-13
[J. Med. Chem. 54 , 166, (2011)]
Synthesis and evaluation of 1-(1H-indol-3-yl)ethanamine derivatives as new antibacterial agents.
2011-05-15
[Bioorg. Med. Chem. 19 , 3204, (2011)]
1994-06-24
[J. Med. Chem. 37 , 2011, (1994)]