Protein Engineering 1996-04-01

Incorporation of an unnatural amino acid in the active site of porcine pancreatic phospholipase A2. Substitution of histidine by 1,2,4-triazole-3-alanine yields an enzyme with high activity at acidic pH.

S H Beiboer, B van den Berg, N Dekker, R C Cox, H M Verheij

Index: Protein Eng. 9(4) , 345-52, (1996)

Full Text: HTML

Abstract

The effect of the substitution of the active site histidine 48 by the unnatural 1,2,4-triazole-3-alanine (TAA) amino acid analogue in porcine pancreas phospholipase A2 (PLA2) was studied. TAA was introduced biosynthetically using a his-auxotrophic Escherichia coli strain. To study solely the effect of the substitution of the active site histidine, two nonessential histidines (i.e. His17 and His115) were replaced by asparagines, resulting in a fully active mutant enzyme (His-PLA2). In this His-PLA2 the single histidine as position 48 was substituted by TAA with an incorporation efficiency of about 90%, giving a mixture of His-PLA2 and TAA-PLA2. Based on the charge difference at acidic pH, both forms could be separated by FPLC, allowing for the purification of TAA-PLA2 free from His-PLA2. At pH 6, TAA-PLA2 has a fivefold reduced activity compared with His-Pla2. This reduced activity paralells a reduced rate of covalent modification with p-nitrophenacyl bromide of TAA-PLA2 compared with His-PLA2. Competitive inhibition gave comparable IC50 values for WT-PLA2, His-PLA2 and TAA-PLA2. These results indicate that the reduction in activity is not caused by a different affinity for the substrate, but more likely results from a reduced kcat value in TAA-PLA2. The enzymatic activities for native and mutant PLA2s were measured at different pH values. For WT-PLA2 and His-PLA2 the activity is optimal at pH 6 and is strongly deminished at acidic pH, with no observable activity at pH 3. In contrast, TAA-PLA2 is as active at pH 3 as at pH 6. Most likely, the decrease in activity observed for WT-PLA2 and His-PLA2 is caused by the protonation of the active site His48, which is the general base involved in the activation of the nucleophilic water molecule. In TAA-PLA2, however, the active site residue TAA48 is unprotonated at both pH 3 and 6 as a result of the low pKa of TAA compared with histidine.


Related Compounds

Related Articles:

Incorporation of amino acid analogs during the biosynthesis of Escherichia coli aspartate transcarbamylase.

1980-09-09

[Biochim. Biophys. Acta 615(1) , 59-69, (1980)]

Synthesis of a novel histidine analogue and its efficient incorporation into a protein in vivo.

2003-09-01

[Protein Eng. 16 , 699-706, (2003)]

Classifying mutagens as to their specificity in causing the six possible transitions and transversions: a simple analysis using the Salmonella mutagenicity assay.

1986-01-01

[Environ. Mutagen. 8 , 9, (1986)]

Simple and efficient synthesis of racemic 2-(tert-butoxycarbon-ylamino)-2-methyl-3-(1H-1,2,4-triazol-1-yl)propanoic acid, a new derivative of β-(1,2,4-triazol-1-yl)alanine.

2011-01-01

[Molecules 16 , 3380-3390, (2011)]

Incorporation of 1,2,4-triazole-3-alanine into a mutant of phage lambda lysozyme containing a single histidine.

1998-03-01

[Protein Eng. 11(3) , 213-7, (1998)]

More Articles...