Biochimica et Biophysica Acta 1993-09-13

Synthesis and characterization of antagonists of cyclic-ADP-ribose-induced Ca2+ release.

T F Walseth, H C Lee

Index: Biochim. Biophys. Acta 1178 , 235, (1993)

Full Text: HTML

Abstract

Cyclic ADP-ribose (cADPR) is a naturally-occurring metabolite of NAD+ that is as effective as inositol trisphosphate in mobilizing intracellular Ca2+. A series of analogs modified at the 8-position of the adenine group were synthesized for the investigation of the relationship between the structure of the metabolite and its Ca(2+)-mobilizing activity. Substitution with an amino group at the 8-position of the adenine ring produced an antagonist. The 1H-NMR spectrum of 8-amino-cADPR showed characteristics of that of cADPR and confirmed the replacement of the 8-proton. By itself, 8-amino-cADPR (150 nM) did not induce Ca2+ release from sea-urchin-egg homogenates but totally blocked cADPR (135 nM) from doing so. The effect was reversible, since high concentrations of cADPR could overcome the inhibition. Addition of 8-amino-cADPR to egg homogenates during the cADPR-induced Ca2+ release blocked the release immediately, demonstrating the effectiveness of the antagonist. Measurements of [32P]cADPR binding to its microsomal binding site showed that 8-amino-cADPR was as effective as cADPR itself in competing for the binding site. In addition to blocking cADPR from releasing Ca2+, 8-amino-cADPR also inhibited cADPR from potentiating Ca(2+)-release induced by either divalent cations or by caffeine. Two other 8-substituted analogs were also synthesized. Both 8-Br- and 8-azido-cADPR were also antagonists, although with less potency than 8-amino-cADPR. These results show that alterations at the 8-position of the adenine group do not inhibit cADPR from binding to its receptor but do eliminate the ability of the metabolite to activate the Ca(2+)-release mechanism.


Related Compounds

Related Articles:

Calcium signaling by cyclic ADP-ribose and NAADP. A decade of exploration.

1998-01-01

[Cell Biochem. Biophys. 28 , 1-17, (1998)]

Intracellular Ca2+ stores could participate to abscisic acid-induced depolarization and stomatal closure in Arabidopsis thaliana.

2009-09-01

[Plant Signal Behav. 4 , 830-835, (2009)]

Actions of cADP-ribose and its antagonists on contraction in guinea pig isolated ventricular myocytes. Influence of temperature.

1997-11-01

[Circ. Res. 81 , 879-884, (1997)]

ADP-ribosyl cyclase and CD38. Multi-functional enzymes in Ca+2 signaling.

1997-01-01

[Adv. Exp. Med. Biol. 419 , 411, (1997)]

Characterization of cyclic adenosine diphosphate-ribose-induced Ca2+ release in T lymphocyte cell lines.

1995-10-01

[J. Immunol. 155 , 3353, (1995)]

More Articles...