Journal of Molecular Biology 2008-05-09

Salt-bridge dynamics control substrate-induced conformational change in the membrane transporter GlpT.

Christopher J Law, Jonas Almqvist, Adam Bernstein, Regina M Goetz, Yafei Huang, Celine Soudant, Aatto Laaksonen, Sven Hovmöller, Da-Neng Wang

Index: J. Mol. Biol. 378(4) , 828-39, (2008)

Full Text: HTML

Abstract

Active transport of substrates across cytoplasmic membranes is of great physiological, medical and pharmaceutical importance. The glycerol-3-phosphate (G3P) transporter (GlpT) of the E. coli inner membrane is a secondary active antiporter from the ubiquitous major facilitator superfamily that couples the import of G3P to the efflux of inorganic phosphate (P(i)) down its concentration gradient. Integrating information from a novel combination of structural, molecular dynamics simulations and biochemical studies, we identify the residues involved directly in binding of substrate to the inward-facing conformation of GlpT, thus defining the structural basis for the substrate-specificity of this transporter. The substrate binding mechanism involves protonation of a histidine residue at the binding site. Furthermore, our data suggest that the formation and breaking of inter- and intradomain salt bridges control the conformational change of the transporter that accompanies substrate translocation across the membrane. The mechanism we propose may be a paradigm for organophosphate:phosphate antiporters.


Related Compounds

Related Articles:

Enzymatic measurement of phosphatidic acid in cultured cells.

2009-09-01

[J. Lipid Res. 50 , 1945 - 1952., (2009)]

More Articles...