Physiology & Behavior 1995-03-01

Hyperpolarization of the cell membrane of mouse hepatocytes by fatty acid oxidation.

R Rossi, M Geronimi, P Gloor, M C Seebacher, E Scharrer

Index: Physiol. Behav. 57(3) , 509-14, (1995)

Full Text: HTML

Abstract

The effect of palmitate and metabolizable and nonmetabolizable monosacharides (D-glucose, D-fructose and 2-deoxy-D-glucose = 2-DG) on the membrane potential (Vm) of mouse hepatocytes was investigated employing a superfused mouse liver slice technique. Palmitate hyperpolarized the liver cell membrane in a concentration dependent manner whereas the monosaccharides tested did not. When mice were fed a fat-rich diet, the hyperpolarisation was greater in comparison to mice fed a low fat diet. The hyperpolarization was reversed by ouabain, an inhibitor of the Na+/K(+)-ATPase, by the K(+)-channel blockers tetra-ethyl-ammonium (TEA) and cetiedil and by three inhibitors of fatty acid oxidation (2-bromopalmitate, 2-bromooctanoate and 4-pentenoate). The results suggest that hyperpolarization of the liver cell membrane is due to fatty acid oxidation and that both activation of Na+/K(+)-ATPase and opening of K(+)-channels are involved. The implications of these findings with regard to control of food intake by fatty acid oxidation are discussed. The results are consistent with a role of the hepatic membrane potential in control of food intake by fatty acid oxidation.


Related Compounds

Related Articles:

Surface Eroding, Semicrystalline Polyanhydrides via Thiol-Ene "Click" Photopolymerization.

2015-05-11

[Biomacromolecules 16 , 1650-9, (2015)]

Resveratrol protects against experimental induced Reye's syndrome by prohibition of oxidative stress and restoration of complex I activity.

2014-09-01

[Can. J. Physiol. Pharmacol. 92(9) , 780-8, (2014)]

Pentenoic acid pathways for cellulosic biofuels.

2010-06-14

[Angew. Chem. Int. Ed. Engl. 49(26) , 4336-8, (2010)]

Brush border membrane proteins in experimental Fanconi's syndrome induced by 4-pentenoate and maleate.

1992-09-01

[Can. J. Physiol. Pharmacol. 70(9) , 1247-53, (1992)]

Alternative pig liver esterase (APLE) - cloning, identification and functional expression in Pichia pastoris of a versatile new biocatalyst.

2008-02-01

[J. Biotechnol. 133(3) , 301-10, (2008)]

More Articles...