Evidence of cell-associated proteinases from Virgibacillus sp. SK33 isolated from fish sauce fermentation.
Sornchai Sinsuwan, Sureelak Rodtong, Jirawat Yongsawatdigul
Index: J. Food Sci. 76(3) , C413-9, (2011)
Full Text: HTML
Abstract
Cell-associated proteinases from Virgibacillus sp. SK33 isolated from fish sauce fermentation were extracted and characterized. Proteinases were effectively released when washed cells were incubated in 0.3 mg/mL lysozyme in 50 mM Tris-maleate (pH 7) at 37 °C for 2 h. Major cell-associated proteinases exhibited molecular mass of 17, 32, and 65 kDa, but only a 32-kDa proteinase showed strong amidolytic activity toward Suc-Ala-Ala-Pro-Phe-AMC. Activity of all cell-associated proteinases was completely inhibited by phenylmethanesulfonyl fluoride, indicating a characteristic of serine proteinase. In addition, a 65-kDa serine proteinase was also inhibited by ethylenediaminetetraacetic acid, implying a metal-dependent characteristic. Optimum activity toward a synthetic peptide substrate was at 50 °C and pH 8 and 11. Proteinases with molecular mass of 17 and 32 kDa exhibited caseinolytic activity at 25% NaCl and activity based on a synthetic peptide substrate increased with NaCl concentrations up to 25%, suggesting their role in hydrolyzing proteins at high salt concentrations. This is the first report of liberated cell-associated proteinases from a moderate halophile, Virgibacillus sp.The cell-associated proteinases could be extracted from Virgibacillus sp. SK 33 using lysozyme. The extracted enzyme could be applied to hydrolyze food proteins at NaCl content as high as 25%. In addition, this study demonstrated that not only extracellular but also cell-associated proteinases are key factors contributing to protein-degrading ability at high salt environment of Virgibacillus sp. SK 33.
Related Compounds
Related Articles:
Immunomodulation by the Pseudomonas syringae HopZ type III effector family in Arabidopsis.
2014-01-01
[PLoS ONE 9(12) , e116152, (2014)]
Assembly and structure of Lys33-linked polyubiquitin reveals distinct conformations.
2015-04-15
[Biochem. J. 467(2) , 345-52, (2015)]
2015-05-01
[J. Virol. 89(9) , 4918-31, (2015)]
2015-04-17
[J. Biol. Chem. 290(16) , 10000-17, (2015)]
2015-02-17
[Proc. Natl. Acad. Sci. U. S. A. 112(7) , E747-56, (2015)]